
Oracle SQL
Revealed

Executing Business Logic in the
Database Engine
—
Learn about analytic functions,
the model clause, row pattern
matching, and other powerful
features in Oracle SQL
—
Alex Reprintsev

www.allitebooks.com

http://www.allitebooks.org

Oracle SQL Revealed
Executing Business Logic in

the Database Engine

Alex Reprintsev

www.allitebooks.com

http://www.allitebooks.org

Oracle SQL Revealed

ISBN-13 (pbk): 978-1-4842-3371-9 ISBN-13 (electronic): 978-1-4842-3372-6
https://doi.org/10.1007/978-1-4842-3372-6

Library of Congress Control Number: 2018937895

Copyright © 2018 by Alex Reprintsev

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.
com/9781484233719. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Alex Reprintsev
London, United Kingdom

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3372-6
http://www.allitebooks.org

iii

Table of Contents

Part I: Features and Theory ���1

Chapter 1: Joins ���5

ANSI Joins ���6

Other Types of Joins ��10

Oracle-Specific Syntax ��15

ANSI vs� Oracle Native Syntax ���23

Limitation of the Oracle Native Syntax ��23

Unnesting Collections ��36

Correlated Inline Views and Subqueries ��39

ANSI to Native Transformation ���43

Clearness and Readability ���52

Mixing Syntax ��56

Controlling Execution Plan ���60

Limitations of ANSI ��61

Summary���65

Chapter 2: Query Transformations ��67

Summary���82

About the Author ��vii

Introduction ���ix

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 3: Analytic Functions ��85

Differences and Interchangeability of Functions ��98

Summary���102

Chapter 4: Aggregate Functions ���103

Pivot and Unpivot Operators ���110

Cube, Rollup, Grouping Sets ��113

Summary���118

Chapter 5: Hierarchical Queries: Connect by ������������������������������������119

Pseudocolumn Generation in Detail ��135

Summary���138

Chapter 6: Recursive Subquery Factoring ��139

Traversing Hierarchies ��146

Once Again About Cycles ��151

Limitations of the Current Implementation ���156

Summary���158

Chapter 7: Model ��161

Brief Analysis of the Performance���187

Model Parallel Execution ���193

Summary���197

Chapter 8: Row Pattern Matching: match_recognize �����������������������199

Summary���216

Chapter 9: Logical Execution Order of Query Clauses ����������������������217

Summary���233

Chapter 10: Turing Completeness ���235

Summary���242

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Part II: PL/SQL and SQL solutions ��243

Chapter 11: When PL/SQL Is Better Than Vanilla SQL �����������������������245

Specifics of Analytic Functions ���246

Fetch Termination ��246

Avoiding Multiple Sorts ��264

Iterative-Like Computations ��272

When There Is No Effective Built-In Access Method ������������������������������������273

Problems of a Combinatorial Nature ���279

Specifics of Joins and Subqueries ��287

Specifics of Joins ��288

Limitations of the Subqueries ��299

Summary���303

Chapter 12: Solving SQL Quizzes ��305

Converting into Decimal Numeral System ��305

Solution ���305

Connected Components ��308

Solution ���310

Ordering Dependencies ���314

Solution ���316

Percentile with Shift ��320

Solution ���320

N Consequent 1s ���325

Solution ���325

Next Value ���328

Solution ���329

Next Branch ��332

Solution ���333

Table of ConTenTsTable of ConTenTs

vi

Random Subset ���342

Solution ���342

Covering Ranges ���347

Solution ���348

Zeckendorf Representation ���349

Solution ���350

Top Paths ��356

Solution ���357

Resemblance Group ��362

Solution ���363

Baskets ���367

Solution ���369

Longest Increasing Subsequence ���372

Solution ���373

Quine ���377

Solution ���377

Summary���378

Appendix A: Useful Oracle Links ���381

 Index ���383

Table of ConTenTsTable of ConTenTs

vii

About the Author

Alex Reprintsev has more than 10 years of experience in database

development using various databases, including Oracle, Microsoft SQL

Server, MySQL, DB2, and modern SQL engines for Big Data such as

Hive and Impala. He has successfully delivered applications for various

customers covering different workload types such as OLTP, OLAP,

and mixed workloads. During his journey, Alex has faced a number

of challenges related to implementing business logic and tuning SQL

for performance. He believes that details really do matter, and that it is

important to know and exploit the full feature set of whatever database

engine you choose to build your business around.

ix

Introduction

The main purpose of this book is to describe the capabilities of SQL for

implementing complex logic and specific features of Oracle SQL dialect,

in particular. SQL, and especially Oracle dialect, are extremely powerful

languages that allow you to get the result in a highly scalable fashion with

very little code.

The book is dedicated to readers who have working experience with

any relational DBMS as well as basic SQL knowledge. In particular, it’s

good to understand that SQL is a declarative language so it describes what

to get rather than how to get the result. Also it’s highly desirable to know

what a query plan is and how to read it.

The first part provides a thorough overview of SQL capabilities in

Oracle for selecting data as well as some basic SQL concepts. Information

regarding the Cost Based Optimizer intentionally was minimized so the

reader is not getting bogged down in minutiae and can concentrate on

features for implementing business logic and understanding mechanics

of the SQL engine. However, it was impossible to skip some concepts so a

separate chapter is dedicated to query transformations.

Oracle capabilities and features keep evolving from one version

to another so sometimes different Oracle versions 10g (10.2.0.5), 11g

(11.2.0.4), and 12c (12.1.0.2, 12.2.0.1) are referred to highlight these

changes. While introducing new functionality Oracle also aims to fix

existing bugs so I tried not to mention bugs that are already fixed and are

not important for describing possibilities of SQL. It’s very important to

keep in mind that such Oracle evolution occurred because best practices,

which were actual 5, 10, or 15 years ago, may be not the best approach at

all on new versions.

x

The goal, on one hand, was to provide comprehensive analysis of the

functionality but, on the other hand, to minimize the number of pages.

So narration in almost every chapter quickly flows from basic concepts to

complex details. Sometimes the reader may want to ask questions that will

be answered later on in the text so just keep reading and hopefully you will

find required clarifications or additional details.

The book’s second part covers a number of real-life tasks that can be

solved using Oracle SQL dialect. Sometimes PL/SQL solutions are also

provided just to highlight current limitations of SQL or to demonstrate that

PL/SQL may be a preferable solution from a performance point of view

even if an SQL solution looks concise and easy. You can find a bunch of

real cases when PL/SQL is better than Vanilla SQL in the first chapter of

Part II.

I do not see a reason to collect algorithmic quizzes that require only

PL/SQL programming because PL/SQL is yet another procedural language

with some OOP extensions, so the reader can find various books dedicated

to algorithms and programming and try to implement those programs in

PL/SQL. To understand PL/SQL advantages to compare to an ordinary

procedural language, please refer to note [8] in the Appendix. Also PL/SQL

has a number of features to effectively interact with the SQL engine and

note [9] in the Appendix may be a good source to begin with.

InTroduCTIonInTroduCTIon

PART I

Features and Theory
Chapters 1-10 are organized to follow the list below of Oracle SQL features:

 1. All joins can be implicitly specified in the query;

however sometimes it makes sense to use

subqueries, for example, for a more efficient way to

implement an ANTI/EQUI join. Correlated scalar

subqueries may be more efficient than outer joins

because of scalar subquery caching.

 2. Query transformations make it possible for two

queries with quite different text to have the same

plan and performance. On the other hand, query

transformations are not a universal panacea and

sometimes manual query refactoring is required to

achieve the best performance.

 3. Analytic functions are an invaluable feature that

helps to implement tricky logic without joins. On the

other hand, they almost always require a sort, which

may be an issue on big data volumes.

 4. Aggregate functions allow us to group data and

calculate aggregate values as well as implement

some complex flattening or pivoting logic.

2

 5. Connect by is the best tool to traverse hierarchies

or generate lists; however it should not be used

to traverse graphs despite built-in capabilities to

handle cycles if performance is critical.

 6. Recursive subquery factoring extends capabilities

of traversing hierarchies in a way that you can

refer values calculated on a previous level. When

recursive subquery factoring is used for iterative

transformations of a dataset you should take

into account that a new recordset is generated

on each iteration, which leads to intensive

memory consumption. A functional advantage

in comparison to a model clause is that you can

calculate multiple measures on each step. In case of

a model clause, the first measure is evaluated for all

specified rows, then the second one, one and so on.

 7. Model is the most powerful SQL feature but it’s

shining in quite specific cases. Model may require

intensive CPU and memory consumption and does

not scale well enough for millions of rows; however

performance can be dramatically improved in case

of parallel execution of partitioned models.

 8. Row pattern matching adds noticeable flexibility

for analysis of recordsets. This feature is the only

way to solve a wide range of tasks in pure SQL in

a scalable and efficient manner, and in addition it

demonstrates a bit better performance for those

tasks that can also be solved using analytic functions.

Part I Features and theory

3

 9. One query block may contain various clauses

including joins, aggregate and analytic, or even

mixes of advanced features like model clause and

pattern matching. It’s important to understand how

this will be executed from a logical point of view and

what are the pros and cons of using inline views.

 10. It was proven that SQL is Turing complete language

and for academic purposes it was shown how to

implement arbitrary algorithms using an iterative

model. SQL is a declarative language though and

was designed to manipulate data and not for

iterative computations.

Tom Kyte wrote many times over the years, “You should do it in a single

SQL statement if at all possible.” I’d like to elaborate on this statement a

little bit. Even if we remove from consideration advanced features like

recursive subquery factoring, model clause, row pattern matching, and

connect by, there are some tasks that can be solved more efficiently using

PL/SQL. Various examples will be considered in Chapter 11 to provide more

background.

Part I Features and theory

5© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_1

CHAPTER 1

Joins
Most real-life queries combine data from multiple tables instead of

querying a single table. Logic may be encapsulated in a view to hide

complexity from the end user, but the database accesses multiple tables

anyway to get the result set. It’s not necessary that data from all tables in a

query appear in the result; some tables may be used to filter out data from

other tables, for example.

Data from two tables may be combined using join (a join keyword is

not mandatory as it will be shown later), subquery (may be correlated or

not), lateral view (starting with Oracle 12c), or set operators (union/union

all/intersect/minus).

Any logic implemented using set operators or subqueries may

be rewritten with joins, but this may not be always optimal from a

performance point of view. Moreover, semantically equivalent queries may

be rewritten into the same query after query transformations are applied

(see details in Chapter 2, “Query Transformations”) or may have the same

execution plan even if they have not been rewritten into the same query.

Lateral views can be imitated using a table operator on older versions.

Looking forward, let me mention that some queries that use only one

table may be not very easy to understand and may contain quite complex

logic, but that is a rare case (a lot of such queries you can find in Part II).

This chapter covers joins (both ANSI and traditional Oracle outer joins

syntax) along with some details about subqueries, lateral views, and join

methods.

6

 ANSI Joins
The following tables will be used for demonstration.

Listing 1-1. Tables for demonstration

create table t1(id, name) as

select 1, 'A' from dual union all select 0, 'X' from dual;

create table t2(id, name) as

select 2, 'B' from dual union all select 0, 'X' from dual;

• Cross join (also called Cartesian product). It returns all

possible combinations of two table’s rows.

Listing 1-2. Cross join

select *

 from t1

 cross join t2;

 ID N ID N

---------- - ---------- -

 1 A 2 B

 1 A 0 X

 0 X 2 B

 0 X 0 X

• Inner join – join type that returns those and only those

rows from both joined tables satisfying a join predicate

(i.e., predicate evaluates into TRUE).

Chapter 1 Joins

7

Listing 1-3. Inner join

select *

 from t1

 join t2

 on t1.id = t2.id;

 ID N ID N

---------- - ---------- -

 0 X 0 X

The table before the join keyword is called a “left joined table,” and the

table after the join keyword is called a “right joined table.” For an inner join

it does not matter which table is left and which one is right, as the result

will always be the same for the same tables and join predicate.

A predicate may not always be an equality condition; it can be any

expression that evaluates into TRUE, FALSE, or UNKNOWN. UNKNOWN

acts almost like FALSE; if a join predicate evaluates into UNKNOWN

for given rows from two tables, then they will not be part of the result

set. However, if atomic predicates are combined using AND, OR, NOT

conditions, then the result may be different if the subexpression evaluates

to UNKNOWN and not to FALSE. For example, NOT FALSE evaluates to

TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Speaking about joins, the terms “condition,” “predicate,” and “criteria”

are interchangeable.

It’s not mandatory that columns from both tables should be used in the

predicate. “t1.id > 0” is also a valid join condition. All rows from table t2

satisfy this condition and only one row from table t1 does.

Chapter 1 Joins

8

Listing 1-4. Inner join with predicate containing only one table

select *

 from t1

 join t2

 on t1.id > 0;

 ID N ID N

---------- - ---------- -

 1 A 2 B

 1 A 0 X

If a join condition evaluates into true for some row from one table

and multiple rows from another one, then that row will be repeated in the

result multiple times. For example, join condition «t1.id <= t2.id» in

the below example evaluates to true for row with id = 0 from the left join

table and two rows from the right joined table so row with id = 0 appears

in the result twice. The same reasoning is valid for row with id = 2 from the

second table.

Listing 1-5. Inner join with non-equality predicate

select *

 from t1

 join t2

 on t1.id <= t2.id;

 ID N ID N

---- - ---- -

 0 X 0 X

 0 X 2 B

 1 A 2 B

Chapter 1 Joins

9

• Outer join – type of join that returns the same rows as

inner join (i.e., rows from both tables that match join

condition and) and rows from left joined table (for left

join) or right joined table (for right join) or both tables

(full join), which do not match the join condition along

with NULL values in place of other table’s columns.

Listing 1-6. Left outer join

select *

 from t1

 left join t2

 on t1.id = t2.id;

 ID N ID N

---------- - ---------- -

 0 X 0 X

 1 A

Listing 1-7. Right outer join

select *

 from t1

 right join t2

 on t1.id = t2.id;

 ID N ID N

---------- - ---------- -

 0 X 0 X

 2 B

Chapter 1 Joins

10

Listing 1-8. Full outer join

select *

 from t1

 full join t2

 on t1.id = t2.id;

 ID N ID N

---------- - ---------- -

 0 X 0 X

 2 B

 1 A

The unnecessary keyword “outer” was not used in Listings 1-6, 1-7, or 1-8

because keywords left/right/full indicate then that the join is outer. Similarly,

if none of the keywords left/right/full are used in join, then it’s inner, so it does

not make sense to specify this explicitly using an “inner” keyword.

As a rule, developers do not use right join in real-life tasks because it’s

always possible to use left join instead, which makes the statement easier

to understand and improves readability.

When multiple tables (data sets) are joined in a query, then Oracle

joins the first two and after that joins the resulting data set with the third

data set etc. In case of inner joins, there are no logical limitations on the

order of joins and CBO (Cost Based Optimizer) can join tables in any

order irrespective of how tables are listed in the query text. For ANSI outer

joins, the order of joins in the query matters - see section “Clearness and

Readability” for more details.

 Other Types of Joins
• Equi joins. If all join conditions contain equality

operators, then join is called equi join; otherwise join

is called non-equi (Theta) join. Listing 1-3, Listing 1-6,

Listing 1-7, and Listing 1-8 are examples for equi join.

Listing 1-4 and Listing 1-5 are non-equi joins.

Chapter 1 Joins

11

A special case of an equi join is a natural join. A Natural join uses

an implicit join condition, which are equality predicates on common

columns from both tables (i.e., columns with the same names). This

introduces potential danger because if table structure changes, then the

join condition may change as well.

Listing 1-9. Natural join

select * from t1 natural join t2;

 ID N

---------- -

 0 X

It’s possible to specify whether a natural join is inner or outer.

Listing 1-10. Outer natural join

create table t(id, name, dummy) as select 1, 'A', 'dummy' from

dual;

select * from t1 natural left join t;

 ID N DUMMY

---------- - -----

 1 A dummy

 0 X

If there are no common columns in both tables, then natural join will

be effectively cross join.

Another form of equi join on the same columns is named columns

join. It allows us to list all columns for join conditions and preserve join

conditions even if table structure changes.

Chapter 1 Joins

12

Listing 1-11. Named columns join

select * from t1 join t2 using (id);

 ID N N

---------- - -

 0 X X

When using this syntax, a common column only from one table

appears in the result. The same happens in case of a natural join in

Listing 1-9 and Listing 1-10.

• Semi joins. This type of join happens in case of using

conditions like “in (subquery)” or “exists (correlated

subquery)”. Result contains column only from one table

and only one row is returned from that table even if

multiple rows from the subquery satisfy the condition.

Listing 1-12. Semi join

create table t0(id, name) as

select 0, 'X' from dual union all select 0, 'X' from dual;

select t1.* from t1 where t1.id in (select id from t0);

 ID N

---------- -

 0 X

select t1.* from t1 where exists (select id from t0 where

t1.id = t0.id);

 ID N

---------- -

 0 X

Chapter 1 Joins

13

select t1.* from t1 join t0 on t1.id = t0.id;

 ID N

---------- -

 0 X

 0 X

• Anti joins. Work similarly to semi joins but return rows

with no matches from the second table. Anti join appears

when using predicates “not in (subquery)” or “not exists

(correlated subquery).” The result will have no rows when

using “not in” and the subquery contains NULL values.

If the condition evaluates to UNKWNOWN for some

rows and the “not exists” condition, then those rows will

not be part of results; but result is not necessarily empty

if the table in the subquery has NULL values for joining

columns. This logical difference can be seen in the query

plan operation name – HASH JOIN ANTI NA.

Listing 1-13. Anti join

select t1.* from t1 where t1.id not in (select id from t0);

select * from table(dbms_xplan.display_cursor(format => 'basic'));

select t1.* from t1 where not exists (select id from t0 where

t1.id = t0.id);

select * from table(dbms_xplan.display_cursor(format => 'basic'));

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN ANTI NA | |

| 2 | TABLE ACCESS FULL| T1 |

| 3 | TABLE ACCESS FULL| T0 |

Chapter 1 Joins

14

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN ANTI | |

| 2 | TABLE ACCESS FULL| T1 |

| 3 | TABLE ACCESS FULL| T0 |

Here and in many following examples, output from SQL*PLUS may be

trimmed for readability and formatting purposes.

Some SQL engines allow us to explicitly specify SEMI/ANTI. For

example, Cloudera Impala has keywords left/right semi join, left/right

anti join.

Listing 1-14. Cloudera Impala ANTI join syntax

> select * from t1 left anti join t2 on t1.id = t2.id;

+----+

| id |

+----+

| 1 |

+----+

Fetched 1 row(s)

> select * from t1 right anti join t2 on t1.id = t2.id;

+----+

| id |

+----+

| 2 |

+----+

Fetched 1 row(s)

Chapter 1 Joins

15

 Oracle-Specific Syntax
The ANSI join syntax was introduced in Oracle 9i thus before that in order

to join tables all of them should be specified in the from clause and join

conditions in the where clause. Oracle-specific syntax (also called Oracle

native syntax) for outer joins was available much earlier, including versions

such as Oracle 5.

Listing 1-3 with inner join can be rewritten in the following way, as

shown in Listing 1-15.

Listing 1-15. Another form of inner join

select * from t1, t2 where t1.id = t2.id;

Even though this statement does not have the keyword “join,” it fully

complies with the ANSI standard.

Before ANSI support, the only way to specify that join was left or right

was to use Oracle-specific syntax. The construction (+) near column name

indicates that join is outer. Left and right outer joins from Listing 1-6 and

Listing 1-7 can be expressed in the following way, as shown in Listing 1-16.

Listing 1-16. Oracle native syntax for left and right outer join

select * from t1, t2 where t1.id = t2.id(+);

select * from t1, t2 where t1.id(+) = t2.id;

In the first case table t1 is an inner table and table t2 is a left outer

table; in the second case table t1 is a right outer table and table t2 is an

inner table.

A full outer join cannot be expressed using native syntax in a way so

that each table is used only once. As a rule, developers imitated it using

two queries combined using union all.

Chapter 1 Joins

16

Listing 1-17. Imitation of full join using Oracle native syntax

select *

 from t1, t2

 where t1.id = t2.id(+)

union all

select *

 from t1, t2

 where t1.id(+) = t2.id

 and t1.id is null;

Speaking about outer joins, it’s very important to understand concepts

of “pre-join” and “post-join” predicates (Metalink Doc ID 14736.1). As

it was mentioned earlier, in the ANSI outer join description, if there is

no matching row in the outer table, then columns in the result set are

populated with NULL values. The difference between pre-join and post-

join predicates is that pre-join predicates are evaluated before NULL

augmentation while post-join predicates are logically evaluated after it. In

other words, pre-join can be considered as join predicates and post-join as

filer predicates.

Listing 1-18. Pre-join and post-join predicates in Oracle native

syntax

select *

 from t1, t2

 where t1.id = t2.id(+)

 and t2.id is null;

 ID N ID N

---------- - ---------- -

 1 A

Chapter 1 Joins

17

Expression “t1.id = t2.id(+)” in Listing 1-18 is a pre-join predicate

and “t2.id is null” is a post-join predicate. Row with id = 1 from table t1

does not have a matching row from table t2 for the join condition “t1.id

= t2.id(+)” so NULL values are populated for columns from t2 and after

that filter by “t2.id is null” is applied.

It’s important to mention that a filter predicate by an inner table

may be (will be) applied before joining but this does not violate the

definitions of pre-join and post-join predicates. This is part of optimization

and you can find additional details at the end of Chapter 2, “Query

Transformations” where the “selection” operation is mentioned.

Please analyze which predicates are pre-join and post-join in Listing 1-19

(answer will be given right after the code snippet).

Listing 1-19. Pre-join and post-join predicates

create table t3 as

select rownum - 1 id, mod(rownum, 2) sign from dual connect by

level <= 3;

1)

select *

 from t3

 left join t1

 on t1.id = t3.id

 order by t3.id;

 ID SIGN ID N

---------- ---------- ---------- -

 0 1 0 X

 1 0 1 A

 2 1

Chapter 1 Joins

18

2)

select *

 from t3

 left join t1

 on t1.id = t3.id

 and t1.id = 1

 order by t3.id;

 ID SIGN ID N

---------- ---------- ---------- -

 0 1

 1 0 1 A

 2 1

3)

select *

 from t3

 left join t1

 on t1.id = t3.id

 where t1.id = 1

 order by t3.id;

 ID SIGN ID N

---------- ---------- ---------- -

 1 0 1 A

4)

select *

 from t3, t1

 where t1.id(+) = t3.id

 and t1.id(+) = 1

 order by t3.id;

Chapter 1 Joins

19

 ID SIGN ID N

---------- ---------- ---------- -

 0 1

 1 0 1 A

 2 1

5)

select *

 from t3, t1

 where t1.id(+) = t3.id

 and t1.id = 1

 order by t3.id;

 ID SIGN ID N

---------- ---------- ---------- -

 1 0 1 A

The first query simply demonstrates the left outer equi join. Predicate

“t1.id = 1” in the third and fifth queries is post-join while a similar

predicate in the second and fourth queries is pre-join. In the fourth query

we use (+) to mark the predicate as pre-join while in the second case it’s

pre-join because it’s part of the outer join clause.

The concept of pre/post predicates makes sense only in case of outer

joins. The mandatory requirement for an outer join is to have a predicate

that contains columns from both tables and (+) near one of those columns.

Let’s consider the following two queries.

Listing 1-20. Outer joins and presence of (+)

select *

 from t3, t1

 where 0 = 0

 and t1.id(+) > 1

Chapter 1 Joins

20

 order by t3.id;

no rows selected

select *

 from t3, t1

 where nvl2(t3.id, 0, 0) = nvl2(t1.id(+), 0, 0)

 and t1.id(+) > 1

 order by t3.id;

 ID SIGN ID N

---------- ---------- ---------- -

 0 1

 1 0

 2 1

The first query returned no rows because it was not specified that

tables are an outer join. However, in the second query it’s explicitly

specified that t1 is the left outer table by using a predicate that always

evaluates to TRUE.

If some columns from the table are marked with (+) while others are

not, then Oracle may apply transformation “outer to inner join conversion”

(more details about query transformations can be found in the next

chapter).

Listing 1-21. Outer joins converted into inner ones

select * from t1 left join t2 on t1.id = t2.id where t1.name =

t2.name;

select * from t1, t2 where t1.id = t2.id(+) and t1.name =

t2.name;

Using the outer join syntax (whether it’s ANSI or Oracle native) does

not makes sense in such cases and it may be very misleading so it should

always be avoided.

Chapter 1 Joins

21

Sometimes it may be a bit challenging to specify that the predicate is

pre-join using Oracle native syntax. If a pre-join predicate contains either

both tables or the outer table, it’s quite straightforward to specify it as was

shown in Listing 1-19, the fourth case. However, if the pre-join predicate

contains only an inner table then we need to use a column from the outer

table as well to define pre-join nature of the predicate.

Listing 1-22. Pre-join predicates on inner table in ANSI syntax

select *

 from t3

 left join t1

 on t3.id = t1.id

 and t3.sign = 1

 order by 1;

 ID SIGN ID N

---------- ---------- ---------- -

 0 1 0 X

 1 0

 2 1

So to indicate that a predicate on an inner table is pre-join, we can use,

for example, a trick with rowid of the outer table.

Listing 1-23. Pre-join predicate on inner table and trick with rowid

select *

 from t3, t1

 where t3.id = t1.id(+)

 and nvl2(t1.rowid(+), t3.sign, null) = 1

 order by 1;

Chapter 1 Joins

22

 ID SIGN ID N

---------- ---------- ---------- -

 0 1 0 X

 1 0

 2 1

Another approach is to use a case expression (more details about this

approach can be found in the next section – “Limitation of the Oracle

Native Syntax”), which can be easily expressed with decode for equi

conditions.

Listing 1-24. Pre-join predicate on inner table and approach with

case (decode) expression

select *

 from t3, t1

 where case when t3.sign = 1 then t3.id end = t1.id(+)

 order by 1;

 ID SIGN ID N

---------- ---------- ---------- -

 0 1 0 X

 1 0

 2 1

select *

 from t3, t1

 where decode(t3.sign, 1, t3.id) = t1.id(+)

 order by 1;

 ID SIGN ID N

---------- ---------- ---------- -

 0 1 0 X

 1 0

 2 1

Chapter 1 Joins

23

The left part of the case expression evaluates to t3.id only if the

condition “t3.sign = 1” is met and right part of the expression

indicates that tables are outer joined. Unlike trick with rowid, in this

case both predicates from the original query are combined into a single

predicate.

 ANSI vs. Oracle Native Syntax
Both ANSI and native syntax have pros and cons. Some consider ANSI

syntax as syntactic sugar, because it improves readability, but eventually

queries are transformed into native syntax by an SQL engine. However,

there are two exceptions: full join and outer join partition by. This means

it’s not possible to achieve the same execution plan by using Oracle

native syntax. In all other cases, a query in ANSI syntax has a semantically

equivalent form in native syntax with the same query plan; however,

it was not always possible to use such an equivalent before Oracle 12c

because some capabilities were not available for developers – in particular,

lateral views. The current subsection is dedicated to a comprehensive

comparison – ANSI vs Oracle native syntax – and if you are not interested

in such details, then feel free to skip the comparison and proceed to the

conclusion at the end of the chapter.

 Limitation of the Oracle Native Syntax
 1) IN, OR conditions are not allowed in pre-join

predicates.

The query from Listing 1-25 fails in Oracle 10g and

works fine from Oracle 11g onward. A possible

workaround may be using case-expression.

Chapter 1 Joins

24

Listing 1-25. In-predicate in Oracle 10g

select *

 from t1, t2

 where t1.id = t2.id(+)

 and t2.id(+) in (1, 2, 3);

 and t2.id(+) in (1, 2, 3)

 *

ERROR at line 4:

ORA-01719: outer join operator (+) not allowed in operand of OR

or IN

select *

 from t1, t2

 where t1.id = t2.id(+)

 and case when t2.id(+) in (1, 2, 3) then 1 end = 1;

 ID N ID N

---------- - ---------- -

 1 A

 0 X

The query from Listing 1-26 works fine in Oracle 10g

and it is equivalent to the original query if t2.id is an

integer.

Listing 1-26. Between-predicate

select *

 from t1, t2

 where t1.id = t2.id(+)

 and t2.id(+) between 1 and 3

Some queries with in-predicates fail with ORA-01719 in all

versions including Oracle 11gR2 and Oracle12cR2. Case-

expression may be a workaround in such cases as well.

Chapter 1 Joins

25

Listing 1-27. In-predicate in Oracle 11g, 12c

select * from t1 left join t2 on t2.id in (t1.id - 1, t1.id + 1);

 ID N ID N

---------- - ---------- -

 0 X

 1 A 0 X

 1 A 2 B

select * from t1, t2 where t2.id(+) in (t1.id - 1, t1.id + 1);

select * from t1, t2 where t2.id(+) in (t1.id - 1, t1.id + 1)

 *

ERROR at line 1:

ORA-01719: outer join operator (+) not allowed in operand of OR

or IN

select *

 from t1, t2

 where case when t2.id(+) in (t1.id - 1, t1.id + 1) then 1

end = 1;

An Oracle 12c query may be rewritten using a

correlated inline view. The keyword “lateral” is used

for this purpose.

Listing 1-28. Lateral view workaround for in-predicate

select *

 from t1,

 lateral (select *

 from t2

 where t2.id = t1.id - 1

 or t2.id = t1.id + 1)(+) v;

Chapter 1 Joins

26

The Oracle Optimizer team defines lateral view in the following way: A

lateral view is an inline view that contains a correlation referring to other

tables that precede it in the FROM clause.

The ANSI syntax for cross join (cross apply) and outer join (outer

apply) with correlation support also has been added in Oracle 12c.

Listing 1-29. ANSI syntax for lateral views

select *

 from t1

 outer apply (select *

 from t2

 where t2.id = t1.id - 1

 or t2.id = t1.id + 1) v

The following example also fails with ORA-01719 on all Oracle versions

with ANSI support.

Listing 1-30. Another example of in-predicate in Oracle 11g, 12c

select *

 from t1

 left join t2

 on t1.id = t2.id

 or t1.id = 1;

 ID N ID N

---------- - ---------- -

 0 X 0 X

 1 A 0 X

 1 A 2 B

select * from t1, t2 where t1.id = t2.id(+) or t1.id = 1;

select * from t1, t2 where t1.id = t2.id(+) or t1.id = 1

 *

Chapter 1 Joins

27

ERROR at line 1:

ORA-01719: outer join operator (+) not allowed in operand of OR

or IN

Workarounds are the same – case-expression or lateral/outer apply.

It’s easier to explain the essence of the trick with case-expression

if predicates are combined using the conjunction (AND) but not the

disjunction (OR).

Listing 1-31. Conjunction predicates

select *

 from t1, t2

 where t1.id = t2.id(+) and t1.id = 1;

 ID N ID N

---------- - ---------- -

 1 A

select *

 from t1, t2

 where t1.id = t2.id(+) and t1.id = nvl2(t2.id(+), 1, 1);

 ID N ID N

---------- - ---------- -

 0 X

 1 A

select *

 from t1, t2

 where case when t1.id = t2.id(+) and t1.id = 1 then 1 end = 1;

 ID N ID N

---------- - ---------- -

 0 X

 1 A

Chapter 1 Joins

28

Predicate «t1.id = 1» was post-join in the first case, and in the

second case the trick with nvl2 was used to specify that comparison with

1 is a pre-join predicate; and finally, case expression was used to specify

inseparability of the predicates: one condition in a case cannot be pre-join

while another one is post-join.

Let’s proceed to disjunction predicates.

Listing 1-32. Disjunction predicates

select *

 from t1

 left join t2

 on t1.id = t2.id

 or t1.id = 1;

 ID N ID N

---------- - ---------- -

 0 X 0 X

 1 A 0 X

 1 A 2 B

The join condition in this query means if t1.id = 1, then join this row

with all the rows from t2; otherwise do an equi join.

The straightforward translation into native syntax may look as what is

shown in Listing 1-33.

Listing 1-33. Disjunction predicates, native syntax

select *

 from t1, t2

 where t1.id = t2.id(+)

 or t1.id = 1;

 where t1.id = t2.id(+)

 *

Chapter 1 Joins

29

ERROR at line 3:

ORA-01719: outer join operator (+) not allowed in operand of OR

or IN

Oracle does not allow you to execute this query; however we may

notice that the query does not make sense if «t1.id = 1» is post-join, but

the SQL engine is not supposed to take a logical meaning into an account.

So let’s try to explicitly specify that both conditions are pre-join

predicates but in this case query also fails with ORA-01719.

Listing 1-34. Disjunction, pre-join predicates, native syntax

select *

 from t1, t2

 where t1.id = t2.id(+)

 or t1.id = nvl2(t2.id(+), 1, 1);

Finally, if we use case-expression, it helps to specify the inseparability

of the conditions and get the desired result.

Listing 1-35. Disjunction, case-expression workaround

select *

 from t1, t2

 where case when t1.id = 1 or t1.id = t2.id(+) then 1 end = 1;

 ID N ID N

---------- - ---------- -

 0 X 0 X

 1 A 0 X

 1 A 2 B

 2) Pre-join predicate cannot contain scalar subqueries

(limitation removed in Oracle 12c).

Chapter 1 Joins

30

Listing 1-36. Pre-join predicates containing scalar subqueries

select *

 from t3

 left join t1

 on t1.id = t3.id

 and t1.id = (select count(*) from dual)

 order by t3.id;

 ID ID N

---------- ---------- -

 0

 1 1 A

 2

select *

 from t3, t1

 where t1.id(+) = t3.id

 and t1.id(+) = (select count(*) from dual)

 order by t3.id;

 order by t3.id

 *

ERROR at line 5:

ORA-01799: a column may not be outer-joined to a subquery

One of the following workarounds may be applied:

• Inline view with the filter by scalar subquery

• Inline view with scalar subquery in select list

• Outer join of the t1 to both t3 and scalar subquery (works

from 12c onward; otherwise fails with ORA- 01417)

Chapter 1 Joins

31

Listing 1-37. Workarounds for outer join with predicate containing

scalar subqery

select t3.id, v.id, v.name

 from t3,

 (select id, name from t1 where t1.id = (select count(*)

from dual)) v

 where t3.id = v.id(+)

 order by t3.id;

select t3.id, t1.id, t1.name

 from (select t3.*, (select count(*) from dual) cnt from t3) t3, t1

 where t3.id = t1.id(+)

 and t3.cnt = t1.id(+)

 order by t3.id;

select t3.id, t1.id, t1.name

 from t3, t1, (select count(*) cnt from dual) v

 where t3.id = t1.id(+)

 and v.cnt = t1.id(+)

 order by t3.id;

 3) Table may be outer joined to at most one other table

(limitation removed in Oracle 12c).

Listing 1-38. Table outer joined with two tables. Native syntax

select *

 from t1, t2, t t3

 where t1.id = t2.id

 and t1.id = t3.id(+)

 and t2.name = t3.name(+);

 and t1.id = t3.id(+)

 *

ERROR at line 4:

ORA-01417: a table may be outer joined to at most one other table

Chapter 1 Joins

32

Inline view can be used as a workaround (please see transformed query

for Oracle 11g in Listing 1-40). The ANSI syntax may look as follows.

Listing 1-39. Table outer joined with two tables. ANSI syntax

select *

 from t1

 join t2

 on t1.id = t2.id

 left join t t3

 on t1.id = t3.id

 and t2.name = t3.name;

 ID N ID N ID N DUMMY

---------- - ---------- - ---------- - -----

 0 X 0 X

If we check the transformed query for ANSI syntax, then Oracle 11g will

create an additional inline view (not lateral) with joined t1 and t2 while the

query for Oracle 12c will be as the query above in native syntax. Transformed

queries are shown below (details regarding how to see transformed queries

will be provided in the next chapter – “Query Transformations”).

Listing 1-40. Transformed queries for join with two tables

11g

select "from$_subquery$_003"."ID" "ID",

 "from$_subquery$_003"."NAME" "NAME",

 "from$_subquery$_003"."ID" "ID",

 "from$_subquery$_003"."NAME" "NAME",

 "T3"."ID" "ID",

 "T3"."NAME" "NAME",

 "T3"."DUMMY" "DUMMY"

Chapter 1 Joins

33

 from (select "T1"."ID" "ID",

 "T1"."NAME" "NAME",

 "T2"."ID" "ID",

 "T2"."NAME" "NAME"

 from "T1" "T1", "T2" "T2"

 where "T1"."ID" = "T2"."ID") "from$_subquery$_003",

 "T" "T3"

 where "from$_subquery$_003"."NAME" = "T3"."NAME"(+)

 and "from$_subquery$_003"."ID" = "T3"."ID"(+)

12c

select "T1"."ID" "ID",

 "T1"."NAME" "NAME",

 "T2"."ID" "ID",

 "T2"."NAME" "NAME",

 "T3"."ID" "ID",

 "T3"."NAME" "NAME",

 "T3"."DUMMY" "DUMMY"

 from "T1" "T1", "T2" "T2", "T" "T3"

 where "T1"."ID" = "T3"."ID"(+)

 and "T2"."NAME" = "T3"."NAME"(+)

 and "T1"."ID" = "T2"."ID"

The last detailed example in this section is rather specific of native

joins than limitation. If a table joined to one other table as inner and

to another one as outer, then it may be not obvious how to specify the

predicate that contains only a column from that table. So in the example

below, table t2 joined with t1 as the outer table and with t3 as the inner

table and the question is this: how to specify predicate “tt2.name is not

null” in native syntax.

Chapter 1 Joins

34

Listing 1-41. Inner/outer joined table

create table tt1 as select 'name' || rownum name from dual

connect by level <= 3;

create table tt2 as select 'x_name' || rownum name from dual

connect by level <= 2;

create table tt3 as select 'y_x_name' || rownum name from dual;

select tt1.name, tt2.name, tt3.name

 from tt1

 left join tt2

 on tt2.name like '%' || tt1.name || '%'

 left join tt3

 on tt3.name like '%' || tt2.name || '%'

 and tt2.name is not null;

NAME NAME NAME

---------- ---------- ----------

name1 x_name1 y_x_name1

name2 x_name2

name3

If we try to use native syntax, then we are getting wrong results

regardless of whether we use (+) or not for “tt2.name is not null”.

Listing 1-42. Inner/outer joined table and native syntax

select tt1.name, tt2.name, tt3.name

 from tt1, tt2, tt3

 where tt2.name(+) like '%' || tt1.name || '%'

 and tt3.name(+) like '%' || tt2.name || '%'

 and tt2.name is not null;

Chapter 1 Joins

35

NAME NAME NAME

---------- ---------- ----------

name1 x_name1 y_x_name1

name2 x_name2

select tt1.name, tt2.name, tt3.name

 from tt1, tt2, tt3

 where tt2.name(+) like '%' || tt1.name || '%'

 and tt3.name(+) like '%' || tt2.name || '%'

 and tt2.name(+) is not null;

NAME NAME NAME

---------- ---------- ----------

name1 x_name1 y_x_name1

name2 x_name2

name3 y_x_name1

To explicitly specify that that condition is a pre-join predicate for t2 and

t3 we can use the approach described in the section “Oracle-Specific Syntax.”

nvl2(tt2.name, 0, null) = nvl2(tt3.rowid(+), 0, 0)

So the predicate shows that t3 is outer joined to t2 and it evaluates to

TRUE if “tt2.name“ is not null.

Taking into account specifics of the query, we can combine the

predicates below

 and tt3.name(+) like '%' || tt2.name || '%'

 and nvl2(tt2.name, 0, null) = nvl2(tt3.rowid(+), 0, 0)

into one

and tt3.name(+) like nvl2(tt2.name, '%' || tt2.name || '%', null)

Another possible workaround for Oracle 12c is a lateral view; actually

for this query Oracle creates a lateral view after transformation from ANSI

syntax for all versions.

Chapter 1 Joins

36

 Unnesting Collections
Let’s consider a table containing a nested table column.

Listing 1-43. Table with nested table column

create or replace type numbers as table of number

/

create table tc (id int, nums numbers) nested table nums store

as nums_t

/

insert into tc

select -1 id, numbers(null) nums from dual

union all select 0 id, numbers() nums from dual

union all select 1 id, numbers(1) nums from dual

union all select 2 id, numbers(1,2) nums from dual;

If we need to unnest a subtable if it’s not empty, then it could be done

using one of the approaches below.

Listing 1-44. Unnesting nested table

select tc.id, x.column_value

from tc, table(tc.nums) x -- 1

--from tc, lateral(select * from table(tc.nums)) x -- 2

--from tc cross apply (select * from table(tc.nums)) x -- 3

--from tc cross join table(tc.nums) x -- 4

;

 ID COLUMN_VALUE

---------- ------------

 -1

 1 1

 2 1

 2 2

Chapter 1 Joins

37

The second and third approaches work starting with Oracle 12c.

Let’s make the logic a bit more complicated: we need to unnest the

table and return even those rows where a nested table is empty.

Listing 1-45. Unnesting nested table preserving rows where it’s empty

select tc.id, x.column_value

from tc, table(tc.nums)(+) x -- 1

--from tc, lateral(select * from table(tc.nums))(+) x -- 2

--from tc cross apply (select * from table(tc.nums))(+) x -- 3

--from tc outer apply (select * from table(tc.nums)) x -- 4

--from tc, table(tc.nums) x where nvl2(x.column_value(+), 0, 0)

= nvl2(tc.id, 0, 0) -- 5

-- from tc left join table(tc.nums) x on nvl2(x.column_value,

0, 0) = nvl2(tc.id, 0, 0) -- 6

;

ID COLUMN_VALUE

---------- ------------

 -1

 0

 1 1

 2 1

 2 2

A couple of important notes about this approach:

• Mixed syntax of cross apply and (+) returns correct result

but this is not documented and should be avoided.

• Always-true predicate containing two tables was used in

options #5 and #6. Option #5 returned incorrect result

because of bug on all versions up to Oracle 12cR1 (row with

id = 0 is missing). On the Oracle 12cR2, all options return all

rows from the original table along with unnested rows.

Chapter 1 Joins

38

If the nested table is not stored, then option #6 returns an incorrect

result on all versions including Oracle 12cR2.

Listing 1-46. Trying to unnest table using ANSI outer join

with tc as

(select -1 id, numbers(null) nums from dual

union all select 0 id, numbers() nums from dual

union all select 1 id, numbers(1) nums from dual

union all select 2 id, numbers(1,2) nums from dual)

select tc.id, x.column_value

from tc left join table(tc.nums) x on nvl2(x.column_value,

0, 0) = nvl2(tc.id, 0, 0);

 ID COLUMN_VALUE

---------- ------------

 -1

 1 1

 2 1

 2 2

One of the descriptions of this behavior is Bug 20363558 : WRONG

RESULTS FOR ANSI JOIN ON NESTED TABLE.

A possible workaround for ANSI syntax for pre 12c versions is below:

Listing 1-47. Unnesting table using ANSI syntax on pre 12c versions

select tc.id, x.column_value

from tc cross join table(case when cardinality(tc.nums) = 0

then numbers(null) else tc.nums end) x

If we use a nested varray instead of a nested table table, for example:

Chapter 1 Joins

39

Listing 1-48. Nested varray

create or replace type num_array as varray(32767) of number

/

create table tc (id int, nums num_array)

/

The result will be incorrect for option #6 irrespective whether varray is

stored or constructed on the fly.

So the query returns a correct result if we use an outer correlated table

operator – table(…)(+) or apply syntax for Oracle 12c. On the other hand, a

query may return an incorrect result if we try to use outer join (both ANSI and

native) and regardless of whether the nested table/varray is persisted or not.

 Correlated Inline Views and Subqueries
It was already demonstrated several times how to implement correlated

inline views by using keywords lateral/apply. Before 12c similar functionality

could be achieved using a table operator and cast + multiset/collect (also

undocumented option in Oracle 11g is event 22829). An obvious disadvantage

of such approaches is necessity to create an SQL type for collection.

If we need to generate the number of rows equals to id for each row,

then we can use the approaches below for Oracle 12c.

Listing 1-49. Correlated inline views, 12c

select t3.id, v.idx

 from t3,

 lateral (select rownum idx

 from dual

 where rownum <= t3.id

 connect by rownum <= t3.id)(+) v;

select t3.id, v.idx

 from t3

Chapter 1 Joins

40

 outer apply (select rownum idx

 from dual

 where rownum <= t3.id

 connect by rownum <= t3.id) v;

Pre Oracle 12c it could be achieved as demonstrated in Listing 1-50.

Listing 1-50. Correlated inline views, 11g

select t3.id, v.column_value idx

 from t3,

 table(cast(multiset (select rownum

 from dual

 where rownum <= t3.id

 connect by rownum <= t3.id) as sys.

odcinumberlist))(+) v;

select t3.id, v.column_value idx

 from t3,

 table (select cast(collect(rownum) as sys.

odcinumberlist)

 from dual

 where rownum <= t3.id

 connect by rownum <= t3.id)(+) v;

Option with cast + multiset is more preferable for performance

reasons.

In all cases, the result is the following:

 ID IDX

---------- ----------

 0

 1 1

 2 1

 2 2

Chapter 1 Joins

41

Strictly speaking, pre Oracle 12c we use an outer correlated table

operator instead of an inline view.

Yet another limitation for correlated subqueries (table operator

and cast + multiset/collect) for pre Oracle 12c versions was visibility of

correlation names only for one level deep. In the example below, m2,

m4, m5 can be calculated only in Oracle 12c (all expressions are logically

equivalent).

Listing 1-51. Visibility of columns from main table in table expression

select id,

 greatest((select min(id) mid from t3 where t3.id >

t.id), 1) m1,

 (select max(mid)

 from (select min(id) mid

 from t3

 where t3.id > t.id

 union

 select 1 from dual) z) m2,

 (select max(value(v))

 from table(cast(multiset (select min(id) mid

 from t3

 where t3.id > t.id

 union

 select 1 from dual) as sys.

odcinumberlist)) v) m3,

 (select max(value(v))

 from table (select cast(collect(mid) as sys.

odcinumberlist) col

 from (select min(id) mid

 from t3

Chapter 1 Joins

42

 where t3.id > t.id

 union

 select 1 from dual) z) v) m4,

 (select value(v)

 from table(cast(multiset (select max(mid)

 from (select min(id) mid

 from t3

 where t3.id > t.id

 union

 select 1 from dual) z) as

 sys.odcinumberlist)) v) m5

 from t3 t

 where t.id = 1;

 ID M1 M2 M3 M4 M5

---------- ---------- ---------- ---------- ---------- --------

 1 2 2 2 2 2

It’s not always possible to simplify a (scalar) subquery so that it

contains only one level deep; a possible workaround in such cases for

pre Oracle 12 was encapsulating logic in UDF and then specifying it in

a select list or rewriting the query to use explicit joins instead of (scalar)

subqueries. In Oracle 12c scalar subqueries also should be used after

careful consideration because sometimes they may be incorrectly or

inefficiently transformed by the SQL engine.

The last important point in this section - lateral/apply does not

allow such a flexible correlation as collect/multiset. For example it’s not

possible to specify the column from the main table to start with. The

last query from Listing 1-52 fails with “ORA-00904: “T1” . “ID”: invalid

identifier” if we uncomment “t1.id”.

Chapter 1 Joins

43

Listing 1-52. Visibility of columns from main table in table

expression and lateral view

select t1.*,

 l.*

 from t1,

 table(cast(multiset (select id

 from t3

 start with t3.id = t1.id

 connect by prior t3.id + 1 = t3.id) as

numbers)) l;

select t1.*, l.*

 from t1,

 table (select cast(collect(id) as numbers)

 from t3

 start with t3.id = t1.id

 connect by prior t3.id + 1 = t3.id) l;

select t1.*, l.*

 from t1,

 lateral (select id

 from t3

 start with t3.id = 0 -- t1.id

 connect by prior t3.id + 1 = t3.id) l;

 ANSI to Native Transformation
Let’s use the following tables and query to demonstrate transformation.

Chapter 1 Joins

44

Listing 1-53. Tables and query to demonstrate ANSI to native

transformation

create table fact as (select 1 value, 1 dim_1_id, 1 dim_2_id,

'A' type from dual);

create table dim_1 as (select 1 id, 1 dim_n_id from dual);

create table dim_n as (select 1 id, 1 value from dual);

create table map as (select 1 value, 'DETAILED VALUE' category

from dual);

select fact.*, map.*

 from fact

 join dim_1

 on dim_1.id = fact.dim_1_id

 join dim_n

 on dim_1.dim_n_id = dim_n.id

 left join map

 on fact.type in ('A', 'B', 'C')

 and ((map.category = 'FACT VALUE' and map.value = fact.

value) or

 (map.category = 'DETAILED VALUE' and map.value = dim_n.

value));

Listing 1-54. Query after transformation into native syntax

select "FACT"."VALUE" "VALUE",

 "FACT"."DIM_1_ID" "DIM_1_ID",

 "FACT"."DIM_2_ID" "DIM_2_ID",

 "FACT"."TYPE" "TYPE",

 "VW_LAT_3C55142F"."ITEM_1_0" "VALUE",

 "VW_LAT_3C55142F"."ITEM_2_1" "CATEGORY"

 from "FACT" "FACT",

 "DIM_1" "DIM_1",

 "DIM_N" "DIM_N",

Chapter 1 Joins

45

 lateral((select "MAP"."VALUE" "ITEM_1_0", "MAP"."CATEGORY"

"ITEM_2_1"

 from "MAP" "MAP"

 where ("FACT"."TYPE" = 'A' or "FACT"."TYPE" =

'B' or

 "FACT"."TYPE" = 'C')

 and ("MAP"."CATEGORY" = 'FACT VALUE' and

 "MAP"."VALUE" = "FACT"."VALUE" or

 "MAP"."CATEGORY" = 'DETAILED VALUE' and

 "MAP"."VALUE" = "DIM_N"."VALUE")))(+)

"VW_LAT_3C55142F"

 where "DIM_1"."DIM_N_ID" = "DIM_N"."ID"

 and "DIM_1"."ID" = "FACT"."DIM_1_ID"

The crucial point here is that Oracle creates a non-mergeable lateral

view. A logically equivalent query in native syntax may be implemented as

the following (it’s not possible to implement a query without an additional

inline view for pre Oracle 12c versions because map table cannot be outer

joined to both fact and dim_n and query fails with “ORA-01417: a table

may be outer joined to at most one other table”).

Listing 1-55. Query manually rewritten into native syntax

select *

 from (select fact.*, dim_n.value as value_1

 from fact, dim_1, dim_n

 where dim_1.id = fact.dim_1_id

 and dim_1.dim_n_id = dim_n.id) sub,

 map

 where case when decode(map.rowid(+), map.rowid(+), sub.type)

in ('A', 'B', 'C') then 1 end = 1

 and decode(map.category(+), 'FACT VALUE', sub.value,

'DETAILED VALUE', sub.value_1) = map.value(+);

Chapter 1 Joins

46

The ANSI version has better readability, but in case of native syntax,

Oracle does not create a non-mergeable correlated inline view so that

it allows us to achieve better performance because the SQL engine

can use HASH JOIN in such cases. This join method is not possible for

lateral views.

A very important point is that if we use predicates for ANSI syntax
in the same form as they were for native syntax, then a lateral view is
not created.

Listing 1-56. ANSI syntax with predicates copied from native syntax

select fact.*, map.*

 from fact

 join dim_1

 on dim_1.id = fact.dim_1_id

 join dim_n

 on dim_1.dim_n_id = dim_n.id

 left join map

 on case when decode(map.rowid, map.rowid, fact.type) in

('A', 'B', 'C') then 1 end = 1

 and decode(map.category, 'FACT VALUE', fact.value, 'DETAILED

VALUE', dim_n.value) = map.value

The query above transformed into the following and the VIEW

operation is absent in the query plan, which means there are non-

mergeable views in the query itself.

Listing 1-57. Transformed query for ANSI version with amended

predicates

select "FACT"."VALUE" "VALUE",

 "FACT"."DIM_1_ID" "DIM_1_ID",

 "FACT"."DIM_2_ID" "DIM_2_ID",

 "FACT"."TYPE" "TYPE",

Chapter 1 Joins

47

 "MAP"."VALUE" "VALUE",

 "MAP"."CATEGORY" "CATEGORY"

 from "FACT" "FACT",

 "DIM_1" "DIM_1",

 "DIM_N" "DIM_N",

 "MAP" "MAP"

 where case when decode("MAP".ROWID(+), "MAP".ROWID(+),

"FACT"."TYPE") in ('A', 'B', 'C') then 1 end = 1

 and "MAP"."VALUE"(+) = decode("MAP"."CATEGORY"(+),

'FACT VALUE', "FACT"."VALUE", 'DETAILED VALUE',

"DIM_N"."VALUE")

 and "DIM_1"."DIM_N_ID" = "DIM_N"."ID"

 and "DIM_1"."ID" = "FACT"."DIM_1_ID"

Transformation ANSI to native continuously evolves from one

Oracle version to another, and some queries do not have lateral views

after transformation even though they led to lateral view creation in

older versions.

As it was mentioned earlier, full join and left/right join partition by are

not transformed into native syntax.

To demonstrate the latter, let’s consider the following requirement. For

each presenter from the table “presentation” display all days of the week

and number of presentations for each day.

Listing 1-58. Tables to demonstrate join partition by

create table week(id, day) as

select rownum,

 to_char(trunc(sysdate, 'd') + level - 1,

 'fmday',

 'NLS_DATE_LANGUAGE = English')

 from dual

connect by rownum <= 7;

Chapter 1 Joins

48

create table presentation(name, day, time) as

select 'John', 'monday', '14' from dual

union all

select 'John', 'monday', '9' from dual

union all

select 'John', 'friday', '9' from dual

union all

select 'Rex', 'wednesday', '11' from dual

union all

select 'Rex', 'friday', '11' from dual;

The result can be achieved by using the query below.

Listing 1-59. Join partition by

select p.name, w.day, count(p.time) cnt

 from week w

 left join presentation p partition by (p.name)

 on w.day = p.day

 group by p.name, w.day, w.id

 order by p.name, w.id;

NAME DAY CNT

---- --------- ----------

John monday 2

John tuesday 0

John wednesday 0

John thursday 0

John friday 1

John saturday 0

John sunday 0

Rex monday 0

Rex tuesday 0

Rex wednesday 1

Chapter 1 Joins

49

Rex thursday 0

Rex friday 1

Rex saturday 0

Rex sunday 0

14 rows selected.

Listing 1-60. Final query after transformations

select "from$_subquery$_003"."NAME_0" "NAME",

 "from$_subquery$_003"."QCSJ_C000000000300000_2" "DAY",

 count("from$_subquery$_003"."TIME_4") "CNT"

 from (select "P"."NAME" "NAME_0",

 "W"."ID" "ID_1",

 "W"."DAY" "QCSJ_C000000000300000_2",

 "P"."DAY" "QCSJ_C000000000300001",

 "P"."TIME" "TIME_4"

 from "PRESENTATION" "P" partition by("P"."NAME")

 right outer join "WEEK" "W"

 on "W"."DAY" = "P"."DAY") "from$_subquery$_003"

 group by "from$_subquery$_003"."NAME_0",

 "from$_subquery$_003"."QCSJ_C000000000300000_2",

 "from$_subquery$_003"."ID_1"

 order by "from$_subquery$_003"."NAME_0", "from$_

subquery$_003"."ID_1"

“partition by (p.name)” means that all rows from the week table will be

joined for each name from the presentation table. The same result can be

achieved without this capability but it requires an additional join.

Listing 1-61. Workaround for join partition by
select w.name, w.day, count(p.time) cnt

 from (select p0.name, w0.*

 from (select distinct name from presentation) p0,

week w0) w,

Chapter 1 Joins

50

 presentation p

 where w.day = p.day(+)

 and w.name = p.name(+)

 group by w.name, w.day, w.id

 order by w.name, w.id;

Let’s consider final query after transformations for SEMI join “select

t1.* from t1 where t1.id in (select id from t0)”

Listing 1-62. Transformed query for SEMI join
select "T1"."ID" "ID", "T1"."NAME" "NAME"

 from "M12"."T0" "T0", "M12"."T1" "T1"

 where "T1"."ID" = "T0"."ID"

There is no special notation for SEMI join predicates, thus a condition in

a final query looks like a simple equality predicate; however the join method

for the original query is HASH JOIN SEMI (similar reasoning applies to ANTI

joins as well). If you try to build a plan for a transformed query, then the

join method will be just HASH JOIN. So additional attention is required

when working with final queries after transformation – they are just a

representation of the transformed queries and may not be semantically

equivalent in all cases to the original query. We can add distinct and

t1.rowid to select a list to get what is required but performance is not the

same as for SEMI join – joining and applying distinct on top of it is not the

same as looking for one row satisfying a join condition for each row from t1.

It’s possible to specify another join method (NESTED LOOPS SEMI in

this case) for the query or to completely disable all transformations using

optimizer hints.

select t1.* from t1 where t1.id in (select /*+ use_nl(t0) */ id

from t0);

select /*+ no_query_transformation */ t1.* from t1 where t1.id

in (select id from t0);

Chapter 1 Joins

51

In the second case Oracle does a full scan of T0 for each row from T1

(it may be index access though if there is an index on T0(id)) to find the

first match.

Listing 1-63. Query plan with disabled transformations

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | FILTER | |

| 2 | TABLE ACCESS FULL| T1 |

| 3 | TABLE ACCESS FULL| T0 |

Predicate Information (identified by operation id):

 1 - filter(EXISTS (SELECT 0 FROM "T0" "T0" WHERE "ID"=:B1))

 3 - access("ID"=:B1)

In general case, plans for an original query and transformed query

may be different and, as it was already mentioned, the final query after

transformation is an SQL-like representation of what will be eventually

executed.

In case of using a Cost Based Optimizer (CBO), original queries that
look quite different may be transformed into the same final query and
lead to the same execution plan because of query transformations.

On the other hand, the way a query is written has much considerable

influence on the query plan while using Rule Based Optimizer (RBO) final

query. In this case a query plan is built based on a predefined set of rules

and a very limited number of transformations. Many of the join methods

are not implemented for RBO; in particular, there is no SEMI JOIN.

Chapter 1 Joins

52

Listing 1-64. Query plan when built by RBO

select /*+ rule */ t1.* from t1 where t1.id in (select id from t0);

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | MERGE JOIN | |

| 2 | SORT JOIN | |

| 3 | TABLE ACCESS FULL | T1 |

|* 4 | SORT JOIN | |

| 5 | VIEW | VW_NSO_1 |

| 6 | SORT UNIQUE | |

| 7 | TABLE ACCESS FULL| T0 |

--

Predicate Information (identified by operation id):

 4 - access("T1"."ID"="ID")

 filter("T1"."ID"="ID")

CBO was introduced in Oracle 7.3 and has been greatly improved

since then; moreover RBO is deprecated since Oracle 10g and Oracle do

not recommend using it in any cases. The above example was provided to

demonstrate that some join methods were missing for RBO and also manual

rewriting of the queries may not be that important as it was in the past.

 Clearness and Readability
Let’s use a simple model with a fact table containing two coordinates of a

single dimension.

Chapter 1 Joins

53

Listing 1-65. Trivial model for star schema

create table fact_ as (select 1 value, 1 dim_1_id, 2 dim_2_id

from dual);

create table dim_ as (select rownum id, 'name'||rownum name

from dual connect by rownum <= 2);

If we need to get dimensional attributes for both coordinates, it can be

done using ANSI syntax as shown in Listing 1-66.

Listing 1-66. Using ANSI to join fact with dimensions

select *

from fact_ f

join dim_ d1 on f.dim_1_id = d1.id

join dim_ d2 on f.dim_2_id = d2.id

Clearness and readability highlights for ANSI:

 1) Join conditions for each dimension are separated

into a correspondent on clause. For inner joins and

complex join conditions it may be not obvious where

to specify predicates – in the where clause or in the

on clause. In such cases the next rule may help:

where clause should contain only filters by a fact

table. For outer joins there is no need for such a rule.

 2) There is no need to create additional inline/lateral

views for outer joins. This feature also may be

considered as a disadvantage because readability

results in more problematic control on a query plan

(see also the section “Controlling Execution Plan”).

 3) There is additional validation for join predicates. It’s

possible to use only those tables that listed before

the current table. For example, the query below will

fail with “ORA-00904: “D2”. “ID”: invalid identifier.”

Chapter 1 Joins

54

Listing 1-67. Validation for predicates for ANSI syntax

select *

from fact_ f

join dim_ d1 on f.dim_1_id = d2.id

join dim_ d2 on f.dim_2_id = d2.id

In case of native syntax, all predicates are listed in a

where clause. Additional control may be achieved

by using inline views.

Also we can introduce various standards for

specifying predicates in a where clause but if a query

contain joins of, let’s say, 20 tables anyway, those

predicates will look a bit messy. If we use ANSI for

inner joins it’s possible to cross join all the tables and

then list all predicates in a where clause but no one

follows this ridiculous approach because separating

join conditions improves readability a lot.

 4) ANSI syntax clearly defines for each predicate

the specific join it belongs to. In case of native

syntax it’s not always easy to specify if a predicate

contains only one table (that was shown in section

“Limitation of the Oracle Native Syntax”).

Flexibility of ANSI syntax allows us to write some cunning queries

that are not that easy to understand. I would not recommend using these

capabilities, but it’s important to know they exist.

So, changing the order of tables in from and join clauses for ANSI

syntax may impact the query result.

Results are different for the queries below because in in the first case,

Oracle joins t1 with t2 and then the result set with t3, while in the second

case it joins t2 with t3 and then the result set with t1.

Chapter 1 Joins

55

Listing 1-68. Changing join order for ANSI syntax

select t1.*, t2.*, t3.*

 from t1

 full join t2

 on t1.id = t2.id

 join t3

 on t2.id = t3.id

 order by t1.id;

 ID N ID N ID

---------- - ---------- - ----------

 0 X 0 X 0

 2 B 2

select t1.*, t2.*, t3.*

 from t2

 join t3

 on t2.id = t3.id

 full join t1

 on t1.id = t2.id

 order by t1.id;

 ID N ID N ID

---------- - ---------- - ----------

 0 X 0 X 0

 1 A

 2 B 2

However, it’s possible to change the order of joins without changing

the order of tables in the query text.

Chapter 1 Joins

56

Listing 1-69. Specifying join clause in place of table reference

select t1.*, t2.*, t3.*

 from t1

 full join (t2 join t3 on t2.id = t3.id) on t1.id = t2.id

 order by t1.id;

 ID N ID N ID

---------- - ---------- - ----------

 0 X 0 X 0

 1 A

 2 B 2

This query may look even more ambiguous if we remove brackets.

Nevertheless this functionality is documented and join_clause may be

specified in place of the table reference. In a trivial case it looks like the

following:

Listing 1-70. table_reference and join_clause

-- table_reference in ()

select * from (dual);

-- join_clause in ()

select * from (dual cross join dual);

 Mixing Syntax
Some people prefer native syntax while others tend to use only ANSI

syntax. In rare cases, it may be acceptable to use both ANSI and native in

the same query but on different levels (or in different subqueries). This

could happen, for example, if the development standard in the team

is ANSI but it does not allow you to fix the plan because of inline views

creation under the hood, or you faced some ANSI bug or limitation

(see section “Limitations of ANSI”).

Chapter 1 Joins

57

It is more surprising that Oracle allows you to mix ANSI and

native syntax even in single from clause. The following examples will

demonstrate some bad practices. I do not think anyone should be using

this but it’s important to understand what is going on if you face such a

query.

So, if you specify ANSI inner join and add operator (+) to a join

condition, then, in fact, Oracle will execute it as an outer join.

Listing 1-71. Original and transformed queries for mixed syntax

select * from t1 join t2 on t1.id = t2.id(+)

select "T1"."ID" "ID",

 "T1"."NAME" "NAME",

 "T2"."ID" "ID",

 "T2"."NAME" "NAME"

 from "T1" "T1", "T2" "T2"

 where "T1"."ID" = "T2"."ID"(+)

Let’s proceed to the following query in Listing 1-72.

Listing 1-72. Mixed syntax in from clause

select *

 from t1, t2

 left join t3

 on t3.id = t2.id + 1;

 ID N ID N ID

---------- - ---------- - ----------

 0 X 0 X 1

 1 A 0 X 1

 0 X 2 B

 1 A 2 B

Chapter 1 Joins

58

Please note that tables t1 and t2 are listed using a comma while t3

was added using an ANSI join. The transformed query looks as shown in

Listing 1-73.

Listing 1-73. Transformed query for mixed syntax in from clause

select "T1"."ID" "ID",

 "T1"."NAME" "NAME",

 "T2"."ID" "ID",

 "T2"."NAME" "NAME",

 "T3"."ID" "ID"

 from "T1" "T1", "T2" "T2", "T3" "T3"

 where "T3"."ID"(+) = "T2"."ID" + 1

Let’s specify all joins in ANSI style and add one more condition.

Listing 1-74. Mixed query rewritten into ANSI along with additional

predicate

select *

 from t1

 cross join t2

 left join t3

 on t3.id = t2.id + 1

 and t3.id = t1.id;

 ID N ID N ID

---------- - ---------- - ----------

 1 A 0 X 1

 0 X 0 X

 1 A 2 B

 0 X 2 B

Chapter 1 Joins

59

If we try to use mixed syntax for the above query, it will fail, which

means that only t2 is visible in an on clause for join with t3.

Listing 1-75. Mixed syntax and complex predicate

select *

 from t1, t2

 left join t3

 on t3.id = t2.id + 1

 and t3.id = t1.id;

 and t3.id = t1.id

 *

ERROR at line 5:

ORA-00904: "T1"."ID": invalid identifier

If we try to specify a predicate for joining t1 and t3 using (+) in a where

clause, then the query fails with ORA-25156.

Listing 1-76. Mixed syntax and predicates in where and on clauses

select *

 from t1, t2

 left join t3

 on t3.id = t2.id + 1

 where t3.id(+) = t1.id;

 where t3.id(+) = t1.id

 *

ERROR at line 5:

ORA-25156: old style outer join (+) cannot be used with ANSI

joins

It would be reasonable to raise «ORA-25156» always when a from clause

contains ANSI syntax and (+) operator or raise another exception, then

different join styles are used in a from clause but demonstrated examples

with mixed syntax work successfully on Oracle 10g, 11g, and 12c.

Chapter 1 Joins

60

 Controlling Execution Plan
As already mentioned, some hints may become invalid while using ANSI

syntax because of lateral/inline views creation under the hood. Moreover,

some hints cannot be used with ANSI, particularly, qb_name. This hint

may be very useful when someone tries to specify tables from an inline

view in the main query hint.

Let’s check aliases for the queries below using “select * from

table(dbms_xplan.display_cursor(format => ‘BASIC ALIAS’));”.

Listing 1-77. Specifying qb_name hint

select --+ qb_name(q)

 *

 from t1

 join t2

 on t1.id = t2.id;

select --+ qb_name(q)

 *

 from t1, t2

 where t1.id = t2.id;

The result is shown below (hint became invalid for ANSI syntax) in

Listing 1-78.

Listing 1-78. Aliases after using qb_name

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$695B99D2

 2 - SEL$695B99D2 / T1@SEL$1

 3 - SEL$695B99D2 / T2@SEL$1

Chapter 1 Joins

61

Query Block Name / Object Alias (identified by operation id):

 1 - Q

 2 - Q / T1@Q

 3 - Q / T2@Q

 Limitations of ANSI
Before Oracle 12c there was a limitation in using ANSI syntax in

subqueries. However I’d say that it was a bug rather than a limitation.

If we use a column from the main query in a join condition, then it fails

with ORA-00904.

Listing 1-79. Using column from main query in ANSI join predicate

select t3.id,

 (select count(t2.rowid) + count(t1.rowid)

 from t2

 join t1

 on t2.id = t1.id

 and t2.id = t3.id) x

 from t3

 order by t3.id;

 and t2.id = t3.id) x

 *

ERROR at line 6:

ORA-00904: "T3"."ID": invalid identifier

We can get rid of the correlated scalar subquery and use explicit joins

instead to avoid error (t3.rowid is added to group by because there is no

guarantee that t3.id is unique).

Chapter 1 Joins

62

Listing 1-80. Using explicit joins instead of correlated scalar

subquery

select t3.id, count(t2.rowid) + count(t1.rowid) x

 from t3

 left join(t2 join t1 on t2.id = t1.id) on t3.id = t2.id

 group by t3.rowid, t3.id

 order by t3.id;

 ID X

---------- ----------

 0 2

 1 0

 2 0

Scalar subqueries may be preferable for performance reasons because

of scalar subquery caching if t3.id has low cardinality.

If we move predicate “t2.id = t3.id” into the where clause, then the

query works fine.

Listing 1-81. Moving predicate with column from main query into

where clause

select t3.id,

 (select count(t2.rowid) + count(t1.rowid)

 from t2

 join t1

 on t2.id = t1.id

 where t2.id = t3.id) x

 from t3

 order by t3.id;

Chapter 1 Joins

63

This workaround is not always possible though, because the join may

be outer and with a condition containing column from the main query.

Query from Listing 1-82 was executed on Oracle 12c (it fails on older

versions).

Listing 1-82. ANSI outer join in scalar subquery

select t3.id,

 (select count(t2.rowid) + count(t1.rowid)

 from t2

 left join t1

 on t2.id = t1.id

 and t3.id > 0

 where t2.id = t3.id) x

 from t3

 order by t3.id;

 ID X

---------- ----------

 0 1

 1 0

 2 1

We can avoid an error in 11g if we move the logic into a select list

expression, but this approach cannot be considered a proper workaround.

See Listing 1-83.

Listing 1-83. Avoiding error for ANSI outer join in scalar subquery

select t3.id,

 (select count(t2.rowid) + decode(sign(t3.id), 1,

count(t1.rowid), 0)

 from t2

 left join t1

Chapter 1 Joins

64

 on t2.id = t1.id

 where t2.id = t3.id) x

 from t3

 order by t3.id;

 ID X

---------- ----------

 0 1

 1 0

 2 1

A better approach would be to use an outer correlated table operator

(type numbers was defined in section “Unnesting Collections”) as shown

in Listing 1-84.

Listing 1-84. Using table operator with ANSI join in scalar subquery

select t3.id,

 (select count(t2.rowid) + count(tt.column_value)

 from t2

 left join table(cast(multiset (select nvl2(t2.rowid,

1, null)

 from t1

 where t2.id = t1.id

 and t3.id > 0) as

numbers)) tt

 on 1 = 1

 where t2.id = t3.id) x

 from t3

 order by t3.id;

And finally a query may be rewritten to use native joins, as shown in

Listing 1-85.

Chapter 1 Joins

65

Listing 1-85. Using native join instead of ANSI in scalar subquery

select t3.id,

 (select count(t2.rowid) + count(t1.rowid)

 from t2, t1

 where t2.id = t3.id

 and t2.id = t1.id(+)

 and decode(sign(t3.id), 1, 0) = nvl2(t1.id(+), 0, 0)) x

 from t3

 order by t3.id;

The same issues occur while using ANSI and correlated subqueries in a

where clause, so this is not specific for scalar subqueries in a select list.

 Summary
As a rule, a query returns data from many tables (or one table occurs

multiple times) and data sets from different tables must be joined into

a single result set (except in cases when they are combined using set

operators - union/union all/intersect/minus). Joins may be explicitly

specified using a join keyword or implicitly using an Oracle native syntax

or subqueries. (ANTI) SEMI joins may be specified by using conditions

(not) in/exists.

The same logic may be implemented in a very different fashion, but

it’s not always possible to get the same plan for different but semantically

equivalent queries. During execution of a query, it’s getting converted into

native syntax and various transformations are applied – additional details

will be explained in the next chapter.

Speaking about ANSI vs. native syntax, it’s worth to mention that ANSI

provides better readability and clearness; however, native syntax allows

better control over an execution plan. Two types of ANSI joins – full and

outer partition by – cannot be expressed in native syntax, so that they have

the same execution plan as an ANSI equivalent.

Chapter 1 Joins

66

ANSI syntax was introduced much later than the native one and

initially had a huge number of bugs. However, as it was shown in the

section “Unnesting Collections,” some bugs still exist even in Oracle 12c

and may appear for both ANSI and native syntaxes.

Chapter 1 Joins

67© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_2

CHAPTER 2

Query
Transformations
The same logic can be implemented using various but semantically

equivalent queries that look quite different but have the same plans and

performance. This is achieved as a result of query transformations –

original queries transform into the same final query.

For instance, the queries from Listing 2-1 have the same performance

and plans. The last one has minor difference though – the join method is

HASH JOIN ANTI NA while for all other queries it is HASH JOIN ANTI, so

the result set for the last query will be empty if t2.id has null values.

Listing 2-1. Different ways to implement ANTI join

select t1.* from t1 left join t2 on t1.id = t2.id where t2.id

is null;

select t1.* from t1 where not exists (select t2.id from t2

where t1.id = t2.id);

select t1.* from t1, t2 where t1.id = t2.id(+) and t2.id is

null;

select t1.* from t1 where t1.id not in (select t2.id from t2);

68

To check applied transformations and final queries, one needs to set

an event 10053 or enable SQL Optimizer tracing before executing the

statement (detailed descriptions of these commands is out of the scope of

this book, additional information can be found in [1]).

Listing 2-2. Enabling tracing for transformations

alter session set events 'trace[rdbms.SQL_Optimizer.*]';

alter session set events '10053 trace name context forever,

level 1';

Final query text will be in a tracing file in the section «Final query

after transformations:******* UNPARSED QUERY IS *******». For all above

queries it will be exactly the same (schema name was manually removed

from the statement) as shown in Listing 2-3:

Listing 2-3. Transformed query for ANTI join

SELECT "T1"."ID" "ID","T1"."NAME" "NAME" FROM "T2", "T1" WHERE

"T1"."ID"="T2"."ID"

If you execute this query it will not return the expected result. That is

because there is no special notation for an ANTI join in a tracing file - even

though it exists in relational algebra. ANTI (or SEMI) joins are not the only

case when a query plan for a final query does not match the query plan for

the original query. There are many other examples and one of them will be

shown in Chapter 5, “Hierarchical queries: connect by” while explaining

how connect by + join + where works.

To check the final query after transformations, you can also use stored

procedure dbms_utility.expand_sql_text added in Oracle 12c (starting with

Oracle 11.2.0.3 there was undocumented dbms_sql2.expand_sql_text for

the same purpose); however, its output may differ from what we see in

trace file so I would recommend using trace files as a more reliable source.

Chapter 2 Query transformations

69

The transformation engine is part of the query optimizer and the

general schema of the optimizer is shown in Figure 2-1. It consists of three

main components: the transformer, estimator, and plan generator.

Parsed Query

Query Transformer

Estimator

Plan Generator

Data
Dictionary

Transformed Query

statistics

Query + estimates

Query Plan

Figure 2-1. Query optimizer components

Transformations are also known as logical optimization while the plan

generator (searches through different access paths, join methods, and join

orders) is responsible for physical optimization. Please see further details

in [2], [3].

Transformations are divided into two main categories (additional

information can be found in documentation and [4]):

• Cost-based transformations – applied based on cost,

for example, or-expansion;

• Heuristic-based transformations – applied based on

heuristics, for instance, simple/complex view merging.

So cost-based transformations are applied only if the cost of the

transformed query is lower than the cost of the original query while

heuristic-based transformations are applied always when some conditions

are met (conditions differ from one transformation to another).

Chapter 2 Query transformations

70

Most of the transformations come into play only when CBO is enabled;

however, some of them may be applied even if RBO is used (let me remind

you that RBO is deprecated and this information is provided to shed some

light on how it works internally).

For example, the query from Listing 2-4 shows that there are two

different pieces of code for OR-expansion.

Listing 2-4. SQL feature hierarchy for OR-expansion

with sql_feature as

 (select lpad(' ', (level - 1) * 2) || replace(f.sql_feature,

'QKSFM_', '') feature,

 sys_connect_by_path(replace(f.sql_feature,

'QKSFM_', ''), '->') feature_path,

 f.description

 from v$sql_feature f, v$sql_feature_hierarchy fh

 where f.sql_feature = fh.sql_feature

 connect by fh.parent_id = prior f.sql_feature

 start with fh.sql_feature = 'QKSFM_ALL')

select *

 from sql_feature

 where lower(replace(description, '-', ' ')) like 'or %';

FEATURE FEATURE_PATH DESCRIPTION

---------- ---------------------------------- -----------

OR_EXPAND ->ALL->COMPILATION->CBO->OR_EXPAND OR expansion

USE_CONCAT ->ALL->COMPILATION->TRANSFORMATION

 ->HEURISTIC->USE_CONCAT Or-optimization

Let’s move on to a specific example of or-expansion.

Chapter 2 Query transformations

71

Listing 2-5. OR-expansion

create table tr(id primary key, name) as

select rownum, lpad('#',rownum,'#') from dual connect by level

<= 1e5;

Table created.

explain plan for select * from tr where id = nvl(:p, id);

Explained.

select * from table(dbms_xplan.display(format => 'basic

predicate'));

PLAN_TABLE_OUTPUT

Plan hash value: 2631158932

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | CONCATENATION | |

|* 2 | FILTER | |

|* 3 | TABLE ACCESS FULL | TR |

|* 4 | FILTER | |

| 5 | TABLE ACCESS BY INDEX ROWID| TR |

|* 6 | INDEX UNIQUE SCAN | SYS_C0011913 |

--

Predicate Information (identified by operation id):

 2 - filter(:P IS NULL)

 3 - filter("ID" IS NOT NULL)

Chapter 2 Query transformations

72

 4 - filter(:P IS NOT NULL)

 6 - access("ID"=:P)

If the value of the bind variable is null, then Oracle will do a full scan of

TR; otherwise it will do an index unique scan. Semantically, this query is

equivalent to the next one:

Listing 2-6. Manual OR-expansion

select *

 from tr

 where id is not null

 and :p is null

union all

select *

 from tr

 where id = :p

 and :p is not null

Listing 2-7 shows the final query after transformations:

Listing 2-7. Final query after OR-expansion

SELECT "TR"."ID" "ID","TR"."NAME" "NAME" FROM "TR" WHERE

"TR"."ID"=NVL(:B1,"TR"."ID")

As you see it’s impossible to figure out whether transformation was

applied or not based on the query text. This transformation could not have

been applied in other circumstances – for example, if there is no index on

ID or if it is not selective. If you want to force the optimizer to do (or not to

do) OR-expansion, you can use hints use_concat/no_expand.

Let’s now turn on RBO and consider an example that is a bit simpler.

Chapter 2 Query transformations

73

Listing 2-8. RBO and OR-expansion

explain plan for

select /*+ rule */ * from tr where id = any (:bind1, :bind2);

Explained.

select * from table(dbms_xplan.display(format => 'basic

predicate'));

PLAN_TABLE_OUTPUT

Plan hash value: 2176406400

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | CONCATENATION | |

| 2 | TABLE ACCESS BY INDEX ROWID| TR |

|* 3 | INDEX UNIQUE SCAN | SYS_C0011913 |

| 4 | TABLE ACCESS BY INDEX ROWID| TR |

|* 5 | INDEX UNIQUE SCAN | SYS_C0011913 |

PLAN_TABLE_OUTPUT

Predicate Information (identified by operation id):

 3 - access("ID"=TO_NUMBER(:BIND2))

 5 - access("ID"=TO_NUMBER(:BIND1))

 filter(LNNVL("ID"=TO_NUMBER(:BIND2)))

19 rows selected.

Chapter 2 Query transformations

74

So in this case OR-expansion also has been triggered but this

transformation is not part of CBO, and it is implemented in a different way.

This transformation cannot be cost-based because cost is not considered

when RBO is turned on.

Let’s proceed to heuristic transformations and consider view merging.

To reproduce it in Oracle 12c, it may be necessary to disable adaptive

plans using the statement “alter session set optimizer_adaptive_

reporting_only = true;”.

Listing 2-9. View merging

explain plan for

select name, cnt

 from t3

 join (select id, max(name) name, count(*) cnt from tr group

by id) sub

 on sub.id = t3.id;

Explained.

select * from table(dbms_xplan.display(format => 'basic

predicate'));

PLAN_TABLE_OUTPUT

Plan hash value: 1900897066

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH GROUP BY | |

| 2 | NESTED LOOPS | |

Chapter 2 Query transformations

75

| 3 | NESTED LOOPS | |

| 4 | TABLE ACCESS FULL | T3 |

|* 5 | INDEX UNIQUE SCAN | SYS_C0011582 |

| 6 | TABLE ACCESS BY INDEX ROWID| TR |

--

Predicate Information (identified by operation id):

--

 5 - access("ID"="T3"."ID")

18 rows selected.

So what happens here? Oracle scans table T3 and then uses the index

access to get correspondent rows from TR, and as a last step it applies

group by. The final query looks like the following shown in Listing 2-10:

Listing 2-10. Final query after view merging

SELECT MAX("TR"."NAME") "NAME",COUNT(*) "CNT" FROM "T3", "TR"

WHERE "TR"."ID"="T3"."ID" GROUP BY "TR"."ID","T3".ROWID

View merging transformation may be affected using hints merge/

no_merge; however if we turn off this transformation for the above query,

then another one will be applied – filter push down. To completely disable

all the transformations we can use a no_query_transformation hint. The

original and final query after transformations in this case is below in

Listing 2-11.

Listing 2-11. Original and final query with disabled transformations

select --+ no_query_transformation

 name, cnt

 from t3

 join (select id, max(name) name, count(*) cnt from tr group

by id) sub

Chapter 2 Query transformations

76

 on sub.id = t3.id;

select "from$_subquery$_004"."NAME_0" "NAME",

 "from$_subquery$_004"."CNT_1" "CNT"

 from (select "SUB"."NAME" "NAME_0", "SUB"."CNT" "CNT_1"

 from "T3",

 (select "TR"."ID" "ID",

 max("TR"."NAME") "NAME",

 count(*) "CNT"

 from "TR"

 group by "TR"."ID") "SUB"

 where "SUB"."ID" = "T3"."ID") "from$_subquery$_004"

As you see, ANSI syntax was converted into Oracle native syntax even

though all the transformations are disabled. This will be more than 100

times slower than the original one with enabled transformations.

In some rare cases both cost-based and heuristic transformations may

lead to degraded performance; however it’s better to narrow down the root

case and disable specific transformations rather than all of them.

Let’s assume we have tables fact_ and dim_ without referential integrity

constraints and our goal is to check whether all the IDs from the fact table

exist in the dimension table.

Listing 2-12. fact_ and dim_ tables

create table fact_ as

select rownum value, rownum - 1 dim_1_id, rownum dim_2_id from

dual connect by rownum <= 1e6;

create table dim_ as

select rownum id, 'name'||rownum name from dual connect by

rownum <= 1e6;

If we check separately for each column in the fact table, then the query

is getting transformed to HASH JOIN ANTI NA and runs very fast.

Chapter 2 Query transformations

77

Listing 2-13. Checking existence for dimension IDs separately

select * from fact_ f where dim_1_id not in (select id from dim_);

select * from fact_ f where dim_2_id not in (select id from dim_);

However, if we try to check that using query from Listing 2-14, it will be

extremely slow. This query cannot be transformed to use HASH JOIN ANTI

twice - because of current implementation limitations.

Listing 2-14. Checking existence for dimension IDs. Slow version

explain plan for

select *

 from fact_ f

 where dim_1_id not in (select id from dim_)

 or dim_2_id not in (select id from dim_);

Explained.

select * from table(dbms_xplan.display(format => 'basic

predicate'));

PLAN_TABLE_OUTPUT

Plan hash value: 481481104

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

|* 1 | FILTER | |

| 2 | TABLE ACCESS FULL| FACT_ |

|* 3 | TABLE ACCESS FULL| DIM_ |

|* 4 | TABLE ACCESS FULL| DIM_ |

Chapter 2 Query transformations

78

Predicate Information (identified by operation id):

 1 - filter(NOT EXISTS (SELECT 0 FROM "DIM_" "DIM_" WHERE

 LNNVL("ID"<>:B1)) OR NOT EXISTS (SELECT 0 FROM

"DIM_" "DIM_" WHERE

 LNNVL("ID"<>:B2)))

 3 - filter(LNNVL("ID"<>:B1))

 4 - filter(LNNVL("ID"<>:B1))

20 rows selected.

If we rewrite the query manually and create an inline view, then it will

be fast again, as shown in Listing 2-15.

Listing 2-15. Checking existence for dimension IDs. Fast version

explain plan for

select *

 from (select * from fact_ f where dim_1_id not in (select id

from dim_))

 where dim_2_id not in (select id from dim_);

Explained.

select * from table(dbms_xplan.display(format => 'basic

predicate'));

Chapter 2 Query transformations

79

PLAN_TABLE_OUTPUT

Plan hash value: 1918822958

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

|* 1 | HASH JOIN ANTI NA | |

|* 2 | HASH JOIN RIGHT ANTI NA| |

| 3 | TABLE ACCESS FULL | DIM_ |

| 4 | TABLE ACCESS FULL | FACT_ |

| 5 | TABLE ACCESS FULL | DIM_ |

--

Predicate Information (identified by operation id):

 1 - access("F"."DIM_2_ID"="ID")

 2 - access("DIM_1_ID"="ID")

18 rows selected.

You may have noticed an interesting detail about the filter operation – it

has three child operations. In our case, one operation is for the fact table

and two operations are for the dimension table to check both IDs. The first

child operation for the filter is row-source, which is filtered and others are

row-sources to check filter conditions. Once first match is found for the

current row then Oracle proceeds to the next one from the main row-source.

Speaking about joins, there are only three join methods in Oracle -

MERGE JOIN, HASH JOIN, NESTED LOOPS – and all of them can operate

with only two row-sources unlike filter operation.

Chapter 2 Query transformations

80

The number of query transformations keeps increasing from one

release to another, and their capabilities evolve more and more as well; for

example, scalar subquery unnesting transformation that can dramatically

improve the performance of some queries was added in Oracle 11gR2.

On the other hand, it will unlikely be possible to make the transformation

engine so intelligent that we can completely avoid manual query rewriting.

Besides query transformation, there are a lot of other conversions

applied to query during the optimization phase starting from ANSI to

native translation to column projection. Important details to note:

• Transformation may impact the query plan and query

performance, but it’s not always possible to figure out

whether transformation was applied or not based on

final query text. For detailed analysis, you can start

with the “Query Transformations (QT)” section of the

optimizer trace.

• It’s important to distinguish query optimizer

transformation and other transformations like ANSI

to native syntax translation. The latter one applies

for all queries regardless of whether query optimizer

transformations are enabled or not.

• ANSI syntax may appear in the final query if original

query has:

 – full join;

 – left/right join partition by.

• Another very important CBO feature is automatic

generation of additional predicates, also referred as

transitive closure (Metalink Doc ID 68979.1). Simply

speaking, if we remove the second or third predicate from

a condition like “where t1.id = t2.id and t1.id = 1

and t2.id = 1” then it will be generated automatically.

Chapter 2 Query transformations

81

• The next transformation to mention is column

projection. Projection is one out of five relation algebra

operations: selection, projection, union, difference,

join. Great introductional articles about relational

algebra written by Iggy Fernandez: SQL Sucks [5],

Explaining the EXPLAIN PLAN [6].

 To demonstrate column projection let’s execute the

query below:

with t_ as (select id, id, name from t)

select name from t_;

 It returned a result without any errors because, in fact,

it’s translated to the query below (only name column

remains after projection is applied):

SELECT "T"."NAME" "NAME" FROM "T" "T"

 On the other hand, Oracle does not allow us to create a

view using the factored query above because of obvious

reasons.

 Like many other popular RDBMS, Oracle applies

heuristics like the following:

 – do a projection “elimination of unnecessary columns from

row-source” as early as possible;

 – do a selection “filtering out unnecessary rows” as early as

possible. In fact this means that the post-join predicate on the

inner table will be applied before join.

In context of CBO this means “as early as possible if

it leads to the plan with lower cost.”

Chapter 2 Query transformations

82

• The final query in the optimizer trace is only an SQL- like

representation of what will be eventually executed

and may not be semantically equivalent to the original

query in all cases. In some cases, plans for the original

and final query may differ. Also, the final query may

not return the same result as the original query, for

example, because there is no special notation for ANTI/

SEMI joins and predicates for them are displayed

simply like equality predicates.

• As you see on Figure 2-1, transformations happen

before plan generation and query hints may become

unusable after transformations. For example, if inline

view has been eliminated after view merging and you

used its alias in the hint, then the hint is no longer valid.

 Summary
Query transformations allow to provide significant flexibility for developers

in writing queries, and they make it possible for queries with considerably

different query texts to have eventually the same query plan and, possibly,

the same final query text. Thanks to query transformations, it’s not

necessary to care about the order of query operations. For example, if you

join two tables and calculate some aggregates, Oracle will decide what to

do first – group by or join if that is possible. Also transformations allow us

to avoid code duplication – for instance, or-expansion may expand one

query into several branches with union all, and transitive closure helps to

avoid “unnecessary” predicates.

Chapter 2 Query transformations

83

However, the transformation engine is not a “silver bullet” and

developers should follow best practices when writing queries to help

optimizer make the right decisions and build optimal plans. The

transformation engine will unlikely ever be so intelligent that manual

query rewriting can be completely avoided.

In additional to query transformations, the SQL engine applies a lot of

other conversions, for example, translation ANSI to native and heuristics

like column projection or column selection.

Chapter 2 Query transformations

85© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_3

CHAPTER 3

Analytic Functions
Basic SQL provides row-level visibility, and aggregate functions allow us to

analyze data in groups so that each row corresponds to one specific group

according to group by expressions (more details about aggregate functions

provided in the next chapter, “Aggregate Functions”).

Analytic functions introduce window-level visibility. Window defines

the subset of rows used to apply a function for each input row, and its

definition is the same for all rows and is specified in the analytic clause

of the function. Analytic functions are evaluated after all operations like

joins, where, group by, having but before order by so they can appear only

in select list or in order by clause but not in where clause, for example. The

number of rows in a recordset remains the same after the analytic function

is applied, unlike the number of rows after aggregate function is applied

where each group is represented by one row in a result set.

It’s easier to explain how it works based on an example, as shown in

Listing 3-1.

Listing 3-1. Analytic functions

with t as

 (select rownum id, trunc(rownum / 4) part from dual connect by

rownum <= 6)

select t.*,

 sum(id) over(partition by part order by id) sum1,

 sum(id) over(partition by part) sum2

86

 from t

 order by id;

 ID PART SUM1 SUM2

---------- ---------- ---------- ----------

 1 0 1 6

 2 0 3 6

 3 0 6 6

 4 1 4 15

 5 1 9 15

 6 1 15 15

6 rows selected.

“partition by part” means that we apply an analytic function for each

part independently. If it’s omitted, then the whole recordset is treated as

one partition. Without an “order by” clause, window for each row covers

all the rows for the current partition so the result is the same for all rows.

With an “order by” clause, window for each row covers all rows from the

beginning of the partition to the current row. This can be adjusted by

specifying a windowing clause after “order by” while the default behavior is

“range between unbounded preceding and current row” (or simply “range

unbounded preceding”) when “order by” is specified; otherwise it’s “range

between unbounded preceding and unbounded following.”

Partition by clause is not mandatory as well as a windowing clause may

not be specified after an order by; however, for some functions “order by”

must be always provided – for example, in case of row_number or rank.

The logic that can be implemented using analytic functions and single

table access would otherwise require additional joins or subqueries.

Listing 3-2 shows how logic from Listing 3-1 can be implemented without

analytic functions.

Chapter 3 analytiC FunCtions

87

Listing 3-2. Rewriting query without analytic functions

with t as

 (select rownum id, trunc(rownum / 4) part from dual connect by

rownum <= 6)

select t.*,

 (select sum(id) from t t0 where t0.part = t.part and

t0.id <= t.id) sum1,

 (select sum(id) from t t0 where t0.part = t.part) sum2

 from t

 order by id;

 ID PART SUM1 SUM2

---------- ---------- ---------- ----------

 1 0 1 6

 2 0 3 6

 3 0 6 6

 4 1 4 15

 5 1 9 15

 6 1 15 15

6 rows selected.

Back to query transformations, Oracle cannot rewrite this query to use

analytic functions and avoid unnecessary joins and table scans. Such an

intelligence unlikely will be added in the near future.

Analytic functions can help to avoid joins even if different columns are

used in a join condition. In Listing 3-3, the same value is calculated using a

correlated scalar subquery and analytic functions.

Chapter 3 analytiC FunCtions

88

Listing 3-3. Avoiding joins by using analytic functions

exec dbms_random.seed(99);

create table ta as

select rownum id,

 trunc(dbms_random.value(1, 5 + 1)) x1,

 trunc(dbms_random.value(1, 5 + 1)) x2,

 trunc(dbms_random.value(1, 5 + 1)) x3

 from dual

connect by level <= 10;

select (select sum(x3) from ta t0 where t0.x2 = ta.x1) s,

 case

 when x1 > x2 then

 sum(x3) over(order by x2 range between greatest

(x1 - x2, 0)

 following and greatest(x1 - x2, 0) following)

 else

 sum(x3) over(order by x2 range between greatest

(x2 - x1, 0)

 preceding and greatest(x2 - x1, 0) preceding)

 end sa,

 ta.*

 from ta

 order by id;

 S SA ID X1 X2 X3

---------- ---------- ---------- ---------- ---------- ----------

 4 4 1 3 1 2

 10 10 2 1 5 4

 1 1 3 2 5 1

 9 9 4 5 3 4

Chapter 3 analytiC FunCtions

89

 4 4 5 3 1 1

 6 4 5 1

 7 4 5 3

 4 4 8 3 1 5

 9 9 9 5 2 1

 9 9 10 5 1 2

10 rows selected.

In order to calculate a sum of x3 for rows where x2 equals to x1, we use

a window with a range shift that equals the difference between x1 and x2.

Depending on whether x1 is greater or less than x2, we consider the

following or preceding rows. For each row we are interested only in one

sum, but Oracle needs to calculate both for all rows, so to avoid an exception

when x1-x2 or x2-x1 is negative we apply the greatest function.

In addition to a logical offset by range, a window may be specified

with a physical offset by rows. To highlight the difference let’s consider

the following task. There is a table containing information about cash

withdrawals from an ATM and we need to calculate for each withdrawal

the following:

• For how many transactions the amount was not less

than 50 considering the current transaction and the 5

preceding transactions – 6 withdrawals in total (cnt1);

• For how many transactions the amount was not less

than 50 considering the range between the current

transaction and 5 preceding minutes (cnt2).

Listing 3-4. Implementing logic using windowing clause

exec dbms_random.seed(11);

create table atm as

select trunc(sysdate) + (2 * rownum - 1) / (24 * 60) ts,

 trunc(dbms_random.value(1, 20 + 1)) * 5 amount

Chapter 3 analytiC FunCtions

90

 from dual

connect by level <= 15;

select to_char(ts, 'mi') minute,

 amount,

 count(nullif(sign(amount - 50), -1))

 over(order by ts rows 5 preceding) cnt1,

 count(nullif(sign(amount - 50), -1))

 over(order by ts range interval '5' minute preceding) cnt2

 from atm;

MI AMOUNT CNT1 CNT2

-- ---------- ---------- ----------

01 85 1 1

03 15 1 1

05 100 2 2

07 40 2 1

09 30 2 1

11 50 3 1

13 85 3 2

15 60 4 3

17 5 3 2

19 100 4 2

21 25 4 1

23 30 3 1

25 80 3 1

27 5 2 1

29 35 2 1

15 rows selected.

A bit simpler example to highlight the difference between offset by

range and by rows is in Listing 3-5.

Chapter 3 analytiC FunCtions

91

Listing 3-5. Difference between a logical offset and a physical offset

with t as

(select rownum id, column_value value from table(numbers

(1,2,3,4.5,4.6,7,10)))

select t.*,

 last_value(value)

 over (order by value range between unbounded preceding

and 1 preceding) l1,

 last_value(value)

 over (order by value rows between unbounded preceding

and 1 preceding) l2

 from t;

 ID VALUE L1 L2

---------- ---------- ---------- ----------

 1 1

 2 2 1 1

 3 3 2 2

 4 4.5 3 3

 5 4.6 3 4.5

 6 7 4.6 4.6

 7 10 7 7

7 rows selected.

L1 and L2 differ for id = 5 because the upper bound for the last_value

in the first case is 3.6 (4.6 – 1) while in the second case it’s simply the value

from the previous row - 4.5.

A windowing clause doesn’t make sense for some analytic functions so

it cannot be specified for lag/lead, for example.

Chapter 3 analytiC FunCtions

92

Despite all the flexibility, analytic functions have some limitations:

 1) Only the unbounded preceding, current row,

unbounded following boundaries are allowed

when sorting by multiple columns. For example,

if we have a table containing information about

points (coordinates x and y), then it’s not possible to

calculate for each row how many points exist within

a given shift by x and y from the current point.

 2) Attributes from the current row cannot be referred

to in a function. For example, if we want to sum

the distances from the current point to all other

points, then it’s not doable using analytic functions.

However, if the goal is to sum the distances to some

specific point, then it can be easily done for different

ranges of rows.

The specifics with brief comments inline are below.

Listing 3-6. Limitations of analytic functions

with points as

 (select rownum id, rownum * rownum x, mod(rownum, 3) y

 from dual

 connect by rownum <= 6)

, t as

(select p.*,

 -- the number of points within the distance of 5 by x

coordinate

 -- cannot be solved with analytic functions for more

than one coordinate

 count(*) over(order by x range between 5 preceding and 5

following) cnt,

Chapter 3 analytiC FunCtions

93

 -- sum of the distances to the point (3, 3) for all rows

 -- between unbounded preceding and current row ordered by id

 -- cannot be solved using analytic functions if required

to calculate

 -- distance between other rows and current row rather

than a constant point

 round(sum(sqrt((x - 3) * (x - 3) + (y - 3) * (y - 3)))

 over(order by id),

 2) dist

 from points p)

select t.*,

(select count(*)

 from t t0 where t0.x between t.x-5 and t.x + 5) cnt1,

(select count(*)

 from t t0 where t0.x between t.x-5 and t.x + 5 and t0.y

between t.y-1 and t.y + 1) cnt2,

(select round(sum(sqrt((x - 3) * (x - 3) + (y - 3) * (y - 3))), 2)

 from t t0 where t0.id <= t.id) dist1,

(select round(sum(sqrt((x - t.x) * (x - t.x) + (y - t.y) *

(y - t.y))), 2)

 from t t0 where t0.id <= t.id) dist2

from t

 order by id;

 ID X Y CNT DIST CNT1 CNT2 DIST1 DIST2

---- ---- ---- ---- ------- ------- -------- --------- --------

 1 1 1 2 2.83 2 2 2.83 0

 2 4 2 3 4.24 3 2 4.24 3.16

 3 9 0 2 10.95 2 1 10.95 13.45

 4 16 1 1 24.1 1 1 24.1 34.11

 5 25 2 1 46.13 1 1 46.13 70.2

 6 36 0 1 79.26 1 1 79.26 125.28

6 rows selected.

Chapter 3 analytiC FunCtions

94

So values cnt2 and dist2 cannot be calculated using analytic functions.

Also it’s worth mentioning that if a type of the sort key does not support

arithmetic operations then the logical offset (range) cannot be used.

Obviously, there is no such limitation for physical offset (rows).

Most analytic functions can also act as aggregate functions (if “over”

is not specified); however some of them are purely analytic, for example,

row_number or rank. As was mentioned previously, “order by” is

mandatory for such functions.

A special case of an analytic function is listagg. First, it’s not

commutative, which means that concatenation of the first and second

values is not the same as concatenation of the second and first, unlike sum

or average, for example. Second, “order by” cannot be specified in analytic

clause. Third, it’s not possible to use distinct keyword in a function. Some

differences between listagg and UDF stragg (source code available on

AskTom) are shown in Listing 3-7.

Listing 3-7. Differences between listagg and stragg

with t as

 (select rownum id, column_value value

 from table(sys.odcinumberlist(2, 1, 1, 3, 1))),

t0 as

 (select t.*, row_number() over(partition by value order by id)

rn from t)

select t1.*,

 (select listagg(value, ',') within group(order by value)

 from t t_in

 where t_in.id <= t1.id) cumul_ord

 from (select t0.*,

 listagg(value, ',') within group(order by value)

over() list_ord,

Chapter 3 analytiC FunCtions

95

 listagg(decode(rn, 1, value), ',') within

group(order by value) over() dist_ord,

 stragg(value) over(order by id) cumul,

 stragg(distinct value) over() dist,

 stragg(decode(rn, 1, value)) over(order by id)

cumul_dist

 from t0) t1

 order by id;

 ID VALUE RN LIST_ORD DIST_ORD CUMUL DIST CUMUL_DIST CUMUL_ORD

---- ----- -- --------- -------- ------- ----- ---------- ---------

 1 2 1 1,1,1,2,3 1,2,3 2 1,2,3 2 2

 2 1 1 1,1,1,2,3 1,2,3 2,1 1,2,3 2,1 1,2

 3 1 2 1,1,1,2,3 1,2,3 2,1,1 1,2,3 2,1 1,1,2

 4 3 1 1,1,1,2,3 1,2,3 2,1,1,3 1,2,3 2,1,3 1,1,2,3

 5 1 3 1,1,1,2,3 1,2,3 2,1,1,3,1 1,2,3 2,1,3 1,1,1,2,3

In short, it’s not possible to get cumulative concatenation with window

ordering for listagg. On the other hand, window ordering can be specified

for stragg, but in this case it’s not possible to specify a concatenation order

for result.

So if the goal is to concatenate values with window ordering and

specify the order of the result itself, then it cannot be achieved using

analytic functions and a single table scan. In the above example it was

calculated using scalar subquery.

The important point is that analytic functions is not a panacea.

Sometimes it may be more efficient to use joins instead. Let’s consider

the following case. Data batches identified by batch_id are written into

a stream table with an index on batch_id. Our goal is to calculate the

sum(value) for the last batch_id. See Listing 3-8.

Chapter 3 analytiC FunCtions

96

Listing 3-8. Different approaches: analytic functions vs joins

create table stream as

select batch_id, value

 from (select rownum value from dual connect by rownum <=

10000) x1,

 (select rownum batch_id from dual connect by level <= 1000)

 order by 1, 2;

create index stream_batch_id_idx on stream(batch_id);

exec dbms_stats.gather_table_stats(user, 'stream');

alter session set statistics_level = all;

select sum(s.value)

 from stream s

 where batch_id = (select max(s0.batch_id) from stream s0);

select * from table(dbms_xplan.display_cursor(null,null,

'IOSTATS LAST'));

select sum(value)

 from (select s.*, dense_rank() over(order by batch_id) drnk

from stream s)

 where drnk = 1;

select * from table(dbms_xplan.display_cursor(null,null,

'IOSTATS LAST'));

Execution plans are shown in Listing 3-9 (columns Name and Starts

have been cut out for formatting purposes). So the version with a scalar

subquery a in where clause (which requires additional join) is 35 times

faster than a version with analytic functions – 0.09 vs 3.48 seconds. Most of

the time for the analytic query was spent on the ordering – 3.47 – 1.40 = 2.07

seconds not to mention that number of logical reads increased by more

than 400 times.

Chapter 3 analytiC FunCtions

97

Li
st

in
g

3-
9.

 A
n

al
yt

ic
 fu

n
ct

io
n

s
vs

 jo
in

s:
 e

xe
cu

ti
on

s
p

la
n

s

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
Id

|

Op
er
at
io
n

|
E-
Ro
ws
 |
 A
-R
ow
s
|

A-
 Ti
me

 |
 B
uf
fe
rs
 |
 R
ea
ds
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
 0

|

SE
LE
CT
 S
TA
TE
ME
NT

|

 |

1
|0
0:
00
:0
0.
09
 |

43
 |

40
 |

|
 1

|

 S
OR
T
AG
GR
EG
AT
E

|

 1
 |

1
|0
0:
00
:0
0.
09
 |

43
 |

40
 |

|
 2

|

TA
BL
E
AC
CE
SS
 B
Y
IN
DE
X

RO
WI
D
|
 1
00
00
 |

10
00
0
|0
0:
00
:0
0.
09
 |

43
 |

40
 |

|*
 3

|

 I
ND
EX
 R
AN
GE
 S
CA
N

|
 1
00
00
 |

10
00
0
|0
0:
00
:0
0.
06
 |

25
 |

22
 |

|
 4

|

SO
RT
 A
GG
RE
GA
TE

|

 1
 |

1
|0
0:
00
:0
0.
05
 |

 3
 |

 3
 |

|
 5

|

 I
ND
EX
 F
UL
L
SC
AN
 (
MI

N/
MA
X)
|

 1
 |

1
|0
0:
00
:0
0.
05
 |

 3
 |

 3
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
Id

|

Op
er
at
io
n

|
E-
Ro
ws

|
A-
Ro
ws

|

A-
 Ti
me

 |
 B
uf
fe
rs
 |
 R
ea
ds
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
 0

|

SE
LE
CT
 S
TA
TE
ME
NT

|

|

 1

|0
0:
00
:0
3.
48
 |

 1
78
23
 |
 1
78
20
 |

|
 1

|

 S
OR
T
AG
GR
EG
AT
E

|

 1

|

 1

|0
0:
00
:0
3.
48
 |

 1
78
23
 |
 1
78
20
 |

|*
 2

|

VI
EW

|

10
M
|
 1
00
00

|0
0:
00
:0
3.
47
 |

 1
78
23
 |
 1
78
20
 |

|*
 3

|

 W
IN
DO
W
SO
RT
 P
US
HE
D
RA

NK

|

10
M
|
 1
00
01

|0
0:
00
:0
3.
47
 |

 1
78
23
 |
 1
78
20
 |

|
 4

|

TA
BL
E
AC
CE
SS
 F
UL
L

|

10
M
|

10
M
|0
0:
00
:0
1.
40
 |

 1
78
23
 |
 1
78
20
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

Chapter 3 analytiC FunCtions

98

In some cases, a sort operation caused by analytic queries may be

so inefficient that approaches with additional joins would have better

performance even without any indexes. Even though such cases are quite

rare, it always makes sense to consider different ways to get the desired

result set.

 Differences and Interchangeability
of Functions
This section is not dedicated to describing differences between row_

number and rank or, let’s say, between rank and dense_rank. Instead of

that, we will consider how different functions can be used to implement

the same logic, taking into account specifics of the functions and

windowing clause.

Sometimes you may come across code demonstrated in Listing 3-10.

Listing 3-10. Order by with unbounded range

max(version) over (partition by dt order by version

rows between unbounded preceding and unbounded following)

 latest_version

In this case it does not make any sense to specify the order because the

window for each row is the whole partition so Listing 3-11 shows logically

identical expression.

Listing 3-11. Max value by partition

max(version) over (partition by dt) latest_version

However, sometimes it makes sense to specify order even if the

window is the whole partition.

Chapter 3 analytiC FunCtions

99

Let’s consider the following task: for each row we need to derive a max

value corresponding to a max date. This is implemented in expressions for

m2 and m3 below.

Listing 3-12. Max value for max date

with t(id, value, dt, part) as

(

select 1, 10, date '2015-07-01', 1 from dual

union all select 2, 3, date '2015-08-01', 1 from dual

union all select 3, 2, date '2015-09-01', 1 from dual

union all select 4, 0, date '2016-11-01', 1 from dual

union all select 5, 5, date '2016-11-01', 1 from dual

union all select 6, 9, date '2017-01-01', 1 from dual

union all select 7, 4, date '2017-01-01', 1 from dual

)

select

 t.*,

 max(value) over (partition by part) m1,

 max(value) keep (dense_rank last order by dt) over (partition

by part) m2,

 last_value(value)

 over (partition by part order by dt, value

 rows between unbounded preceding and unbounded following) m3,

 max(value)

 over (partition by part order by dt, value

 rows between unbounded preceding and unbounded following) m4

 from t

order by id;

Chapter 3 analytiC FunCtions

100

 ID VALUE DT PART M1 M2 M3 M4

---------- ---------- -------- ---------- ---- ---- ---- ----

 1 10 01.07.15 1 10 9 9 10

 2 3 01.08.15 1 10 9 9 10

 3 2 01.09.15 1 10 9 9 10

 4 0 01.11.16 1 10 9 9 10

 5 5 01.11.16 1 10 9 9 10

 6 9 01.01.17 1 10 9 9 10

 7 4 01.01.17 1 10 9 9 10

7 rows selected.

So the max date is 01.01.2017 and it has two corresponding values - 4

and 9. The result can be calculated as “max(value)” with “last” function

specified after the keyword keep and ordering by dt or by using the

“last_value” function and ordering by dt and value.

If we need to get the min value then we can use min function instead

of max or simply specify descending order for the value in last_value

function.

Listing 3-13. Min value for max date

 min(value) keep (dense_rank last order by dt) over (partition

by part) m2,

last_value(value)

over (partition by part order by dt, value desc

 rows between unbounded preceding and unbounded following) m3

from t

So in the first case we used another function while in the second one

only the ordering direction by value has changed.

The last example highlights specifics of the “last_value” function and

construction “ignore nulls.” It was impossible to specify “ignore nulls”

before 10g but the workaround is quite straightforward.

Chapter 3 analytiC FunCtions

101

Listing 3-14. Last_value + ignore nulls and workaround for old versions

with t(id, value, part) as

(

select 1, null, 1 from dual

union all select 2, 'one', 1 from dual

union all select 3, null, 1 from dual

union all select 1, 'two', 2 from dual

union all select 2, null, 2 from dual

union all select 3, null, 2 from dual

union all select 4, 'three', 2 from dual

)

select t.*, max(value) over(partition by part, cnt) lv0

 from (select t.*,

 last_value(value ignore nulls) over(partition by

part order by id) lv,

 count(value) over(partition by part order by id) cnt

 from t

 order by part, id) t;

 ID VALUE PART LV CNT LV0

---------- ----- ---------- ----- ---------- ---

 1 1 0

 2 one 1 one 1 one

 3 1 one 1 one

 1 two 2 two 1 two

 2 2 two 1 two

 3 2 two 1 two

 4 three 2 three 2 three

7 rows selected.

Chapter 3 analytiC FunCtions

102

We used count in the inline view to build partitions containing the

current value and all subsequent rows with blank values and max function

on top of that to mimic behavior of the last_value + ignore nulls. So

apparently functions with completely different purposes can be used to

implement the same logic.

 Summary
Analytic functions are very powerful tool that can be used to get the result

that otherwise would require self joins or subqueries. They have been

introduced in Oracle 8i and has significantly evolved since then; however,

their capabilities continue developing in many versions including Oracle 12c.

Oracle provides a flexible definition of the windowing clause to adjust the

default definition of the analytic window, and such a feature has its own

limitations but for most of the practical tasks, built-in flexibility is more

than enough.

Chapter 3 analytiC FunCtions

103© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_4

CHAPTER 4

Aggregate Functions
Aggregate functions return one row for each group defined in a group by

clause. Both column names and expressions can be used to define groups,

and one group is a set of rows with the same values for all expressions

specified in “group by.” Each row belongs to one and only one group. If “group

by” is not specified, then the entire recordset is a single group, and in this case

query always returns one row even if the recordset to be grouped is empty.

Listing 4-1 shows how to calculate the total amount of presentations

and count of working days for all authors based on tables introduced in

Listing 1-58 in Chapter 1.

Listing 4-1. Aggregate functions. Simple example

select p.name,

 count(*) cnt_all,

 count(distinct p.day) cnt_day,

 listagg(p.day || ' ' || p.time || ':00', '; ') within

group(order by w.id) details

 from presentation p, week w

 where p.day = w.day

 group by p.name;

NAME CNT_ALL CNT_DAY DETAILS

---- ---------- ---------- ------------------------------------

John 3 2 monday 14:00; monday 9:00; friday 9:00

Rex 2 2 wednesday 11:00; friday 11:00

104

Only distinct values are passed to an aggregate function when a

distinct keyword is specified. Listagg function was used to display

details for all presentations, as this was pointed out in the previous

chapter – listagg is not commutative and order must be specified after

“within group” keywords. There are some other aggregate functions whose

result depends on the order within a group, for instance - percentile_cont

(see quiz “Percentile with Shift” in Part II for a more complicated example).

Most of the aggregate functions return a result of the atomic type,

which is the same as a type of argument – for example, number, date,

varchar2, etc. However, some functions just combine values together

instead of calculating a result value based on input – for example, collect

and xmlagg.

UDFs can be applied on top of the collect function to process elements

for each group. The collagg function below may be used to concatenate

collection elements.

Listing 4-2. Concatenating collection elements

create or replace function collagg(p in strings) return varchar is

 result varchar2(4000);

begin

 for i in 1 .. p.count loop

 result := result || ', ' || p(i);

 end loop;

 return(substr(result, 3));

end collagg;

/

Where strings is a collection defined as

create or replace type strings as table of varchar2(4000)

/

Chapter 4 aggregate FunCtions

105

Listing 4-3 shows how to get a list of all days with presentations per

presenter as well as a list of distinct days.

Listing 4-3. Using collect function

select name,

 collagg(cast(collect(p.day order by w.id desc) as

strings)) days,

 collagg(set(cast(collect(p.day order by w.id desc) as

strings))) days_unique

 from presentation p, week w

 where p.day = w.day

 group by p.name;

NAME DAYS DAYS_UNIQUE

---- ------------------------------ ---------------------------

John friday, monday, monday friday, monday

Rex friday, wednesday friday, wednesday

Unlike listagg, order by is specified in the function itself, and distinct

keyword is not allowed in collect but the set function can be used to

eliminate duplicates. Even though set function seems to preserve the order

of elements – there is no guarantee that it’s true in all cases.

Similar logic including ordering can be implemented using xmlagg

as shown in the expression below, but elimination of duplicates is not

possible in this case without an additional inline view.

 substr(xmlagg(xmlelement("x", ', ' || p.day) order by w.id

desc)

 .extract('//x/text()')

 .getstringval(), 3) x

Chapter 4 aggregate FunCtions

106

In addition to built-in aggregate functions, Oracle (since version 9i

Release 1) provides an interface for user-defined aggregates (UDAG)

that can be leveraged to implement any complex logic for grouping. For

example, there is a single-row function bitand which does not have an

aggregate analog. If necessary this logic can be implemented using UDF +

collect or UDAG.

In a previous chapter it was shown how analytic functions may help to

avoid joins, and aggregate functions can also be used for this purpose.

For example, a requirements table contains information about

positions and corresponding skills. The goal is to get positions that require

Oracle knowledge without Linux.

create table requirements(position, skill) as

(

select 'Data Scientist', 'R' from dual

union all select 'Data Scientist', 'Python' from dual

union all select 'Data Scientist', 'Spark' from dual

union all select 'DB Developer', 'Oracle' from dual

union all select 'DB Developer', 'Linux' from dual

union all select 'BI Developer', 'Oracle' from dual

union all select 'BI Developer', 'MSSQL' from dual

union all select 'BI Developer', 'Analysis Services' from dual

union all select 'System Administrator', 'Linux' from dual

union all select 'System Administrator', ' Network Protocols'

from dual

union all select 'System Administrator', 'Python' from dual

union all select 'System Administrator', 'Perl' from dual

);

Chapter 4 aggregate FunCtions

107

A straightforward solution is shown below.

select position

 from requirements r

 where skill = 'Oracle'

 and not exists (select null

 from requirements r0

 where r0.position = r.position

 and r0.skill = 'Linux');

POSITION

BI Developer

The main disadvantage of this solution is a correlated subquery in a

where clause that causes an additional scan of the requirements table.

An alternative approach would be to calculate counts for Oracle and

Linux skills and filter out those that do not satisfy.

select position

 from requirements

 group by position

having count(decode(skill, 'Oracle', 1)) = 1

 and count(decode(skill, 'Linux', 1)) = 0;

POSITION

BI Developer

This solution is more preferable from a performance point of view,

and you may notice that aggregate functions are used only for filtering

purposes and not in a select list.

Let’s consider a more generic example. A tables entity and property are

used to implement an entity–attribute–value (EAV) model – this approach

is used in database design to store entities with variable number of

attributes in a single table.

Chapter 4 aggregate FunCtions

108

Listing 4-4. EAV model

with entity(id, name) as

(select 1, 'E1' from dual

union all select 2, 'E2' from dual

union all select 3, 'E3' from dual),

property(id, entity_id, name, value) as

(select 1, 1, 'P1', 1 from dual

union all select 2, 1, 'P2', 10 from dual

union all select 3, 1, 'P3', 20 from dual

union all select 4, 1, 'P4', 50 from dual

union all select 5, 2, 'P1', 1 from dual

union all select 6, 2, 'P3', 100 from dual

union all select 7, 2, 'P4', 50 from dual

union all select 8, 3, 'P1', 1 from dual

union all select 19, 3, 'P2', 10 from dual

union all select 10, 3, 'P3', 100 from dual)

Our goal is to select entities with values for attributes P1, P2, P3 equal

to 1, 10, 100 correspondingly, and properties are supposed to be unique

for each entity. Sometimes developers use multiple joins to achieve this,

which is very inefficient – in fact, the number of joins equals to the number

of attributes we are interested in.

select e.name

 from entity e

 join property p1 on p1.entity_id = e.id and p1.name = 'P1'

 join property p2 on p2.entity_id = e.id and p2.name = 'P2'

 join property p3 on p3.entity_id = e.id and p3.name = 'P3'

 where p1.value = 1 and p2.value = 10 and p3.value = 100;

NAME

E3

Chapter 4 aggregate FunCtions

109

If we required getting values for 20 attributes, this would cause 20

joins, which is not a viable solution at all.

Taking into account that for each property there may be either one

value or no values at all, we can flatten properties for each entity in one

row and apply a filter on top of that.

Listing 4-5. Flattening EAV model using group by

select name

 from (select e.name,

 max(decode(p.name, 'P1', value)) p1_value,

 max(decode(p.name, 'P2', value)) p2_value,

 max(decode(p.name, 'P3', value)) p3_value

 from entity e

 join property p

 on p.entity_id = e.id

 group by e.name)

 where (p1_value, p2_value, p3_value) in ((1, 10, 100));

Finally, flattening is not really necessary so we can simply calculate the

number of properties with specified values.

select e.name

 from property p

 join entity e on p.entity_id = e.id

 where (p.name, p.value) in (('P1', 1), ('P2', 10), ('P3', 100))

 group by e.name

having count(*) = 3;

Chapter 4 aggregate FunCtions

110

 Pivot and Unpivot Operators
Listing 4-5 demonstrates flattening logic implemented using group by;

however starting with Oracle 11g, the same can be achieved using a pivot

operator.

Listing 4-6. Flattening EAV model using pivot operator

create table entity_flattened as

select *

 from (select e.name name, p.name p_name, value

 from entity e

 join property p

 on p.entity_id = e.id)

pivot(max(value) for p_name in('P1' p1_value, 'P2' p2_value,

'P3' p3_value));

Table entity_flattened contains a recordset identical to the one in the

inline view with group by. One of the most important points regarding the

pivot operator is that all columns must be listed in a query because Oracle

defines all the columns of a result set during the parsing phase. Saying that,

it’s not possible to dynamically create columns in a recordset based on data

in a table or other conditions, so if you have such a requirement, then you

can use ODCItable interface (or polymorphic table functions starting with

Oracle 18c). Pivot XML allows you to generate XMLs for a dynamic number

of columns, but if you want to get a result in a relational form you need to list

all of them for XML parsing. This technique is demonstrated in Listing 4-7.

Listing 4-7. Parsing pivot XML

select name, x.*

 from (select *

 from (select e.name name, p.name p_name, value

 from entity e

Chapter 4 aggregate FunCtions

111

 join property p

 on p.entity_id = e.id)

 pivot xml(max(value) value for p_name in(any))),

 xmltable('/PivotSet' passing p_name_xml

 columns

 name1 varchar2(30)

 path '/PivotSet/item[1]/column[@name="P_NAME"]/

text()',

 value1 varchar2(30)

 path '/PivotSet/item[1]/column[@name="VALUE"]/

text()',

 name2 varchar2(30)

 path '/PivotSet/item[2]/column[@name="P_NAME"]/

text()',

 value2 varchar2(30)

 path '/PivotSet/item[2]/column[@name="VALUE"]/

text()',

 name3 varchar2(30)

 path '/PivotSet/item[3]/column[@name="P_NAME"]/

text()',

 value3 varchar2(30)

 path '/PivotSet/item[3]/column[@name="VALUE"]/

text()') x;

NAME NAME1 VALUE1 NAME2 VALUE2 NAME3 VALUE3

----- ----- ------ ----- ------ ----- ------

E1 P1 1 P2 10 P3 20

E2 P1 1 P3 100 P4 50

E3 P1 1 P2 10 P3 100

Given that this logic relates to presenting a result, sometimes it makes

sense to implement it on the client side.

Chapter 4 aggregate FunCtions

112

The reverse operation can be done using the unpivot operator as

shown in Listing 4-8.

Listing 4-8. Unpivot operator

select *

from entity_flattened

unpivot (value for p_name in

 (p1_value as 'P1', p2_value as 'P2', p3_value as 'P3'));

NAME P_NAME VALUE

----- ------ ----------

E1 P1 1

E1 P2 10

E1 P3 20

E3 P1 1

E3 P2 10

E3 P3 100

E2 P1 1

E2 P3 100

8 rows selected.

It creates new rows for each column listed in unpivot clause and

replicates values for all remaining columns. In the example above it’s

“p1_value, p2_value, p3_value” and name correspondingly. There is no

need for “any” keyword for unpivot because the recordset to be unpivoted

always contains fixed and predefined number of columns. Oracle could

have introduced syntactic sugar like “unpivot (value for p_name in

(any except name))” but there is no strong necessity for this.

Chapter 4 aggregate FunCtions

113

Unpivot can be implemented using Cartesian jon.

select name,

 p_name,

 decode(p_name, 'P1', p1_value, 'P2', p2_value, 'P3',

p3_value) value

 from entity_flattened,

 (select 'P1' p_name from dual

 union all select 'P2' from dual

 union all select 'P3' from dual)

 where decode(p_name, 'P1', p1_value, 'P2', p2_value, 'P3',

p3_value) is not null

 order by 1, 2;

 Cube, Rollup, Grouping Sets
Oracle provides additional capabilities for calculating totals and subtotals.

Let’s consider a table with information about orders.

create table orders(order_id, client_id, product_id, quantity) as

(

select 1, 1, 1, 1 from dual

union all select 1, 1, 2, 2 from dual

union all select 1, 1, 3, 1 from dual

union all select 2, 2, 1, 1 from dual

union all select 2, 2, 5, 1 from dual

union all select 3, 1, 1, 1 from dual

union all select 3, 1, 4, 1 from dual

union all select 3, 1, 4, 1 from dual

union all select 4, 2, 4, 1 from dual

union all select 4, 2, 5, 1 from dual

);

Chapter 4 aggregate FunCtions

114

“Rollup” allows us to calculate subtotals from right to left and “cube”

allows us to calculate all possible subtotals for listed columns.

select client_id, product_id, sum(quantity) cnt

 from orders

 group by rollup(client_id, product_id)

 order by client_id, product_id;

 CLIENT_ID PRODUCT_ID CNT

---------- ---------- ----------

 1 1 2

 1 2 2

 1 3 1

 1 4 2

 1 7

 2 1 1

 2 4 1

 2 5 2

 2 4

 11

10 rows selected.

select client_id, product_id, sum(quantity) cnt

 from orders

 group by cube(client_id, product_id)

 order by client_id, product_id;

 CLIENT_ID PRODUCT_ID CNT

---------- ---------- ----------

 1 1 2

 1 2 2

 1 3 1

 1 4 2

Chapter 4 aggregate FunCtions

115

 1 7

 2 1 1

 2 4 1

 2 5 2

 2 4

 1 3

 2 2

 3 1

 4 3

 5 2

 11

15 rows selected.

The same can be done using respectively.

grouping sets ((), (client_id), (client_id, product_id))

and

grouping sets ((), (client_id), (product_id), (client_id, product_id))

Functions grouping and grouping_id can be used to identify

subtotals. Grouping accepts only a single expression as a parameter while

grouping_id can accept multiple expressions.

select decode(grouping(client_id), 1, 'all clients', client_id)

as client_id,

 decode(grouping(product_id), 1, 'all products', product_id)

as product_id,

 sum(quantity) cnt,

 decode(grouping_id(client_id, product_id),

 bitand(grouping_id(client_id, product_id), bin_

to_num(0, 0)),

 'client, product',

Chapter 4 aggregate FunCtions

116

 bitand(grouping_id(client_id, product_id),

bin_to_num(0, 1)),

 'client',

 bitand(grouping_id(client_id, product_id),

bin_to_num(1, 1)),

 'grand total') slice

 from orders

 group by rollup(client_id, product_id)

 order by client_id, product_id;

CLIENT_ID PRODUCT_ID CNT SLICE

--------------- --------------- ---------- --------------------

1 1 2 client, product

1 2 2 client, product

1 3 1 client, product

1 4 2 client, product

1 all products 7 client

2 1 1 client, product

2 4 1 client, product

2 5 2 client, product

2 all products 4 client

all clients all products 11 grand total

10 rows selected.

There is also a function group_id that can be used to distinguish the

same slices.

select decode(grouping(client_id), 1, 'all clients', client_id)

as client_id,

 decode(grouping(product_id), 1, 'all products', product_id)

as product_id,

 sum(quantity) cnt,

 group_id() group_id

Chapter 4 aggregate FunCtions

117

 from orders

 group by grouping sets(client_id, product_id,(),())

 order by client_id, product_id;

CLIENT_ID PRODUCT_ID CNT GROUP_ID

--------------- --------------- ---------- ----------

1 all products 7 0

2 all products 4 0

all clients 1 3 0

all clients 2 2 0

all clients 3 1 0

all clients 4 3 0

all clients 5 2 0

all clients all products 11 0

all clients all products 11 1

9 rows selected.

Without these capabilities, the same result can be achieved using

multiple table scans and groupings for each grouping set. On the other

hand, it’s doable using a single table scan and Cartesian join with slices, but

performance of built-in functionality will be better because it’s optimized to

calculate aggregates by different attributes for the same recordset.

select client_id, product_id, sum(quantity) cnt, slice

 from (select decode(instr(slice, 'client'), 0,

 'all clients', client_id) as client_id,

 decode(instr(slice, 'product'), 0,

 'all products', product_id) as product_id,

 quantity,

 slice

 from orders,

 (select 'client, product' slice from dual

 union all select 'client' from dual

Chapter 4 aggregate FunCtions

118

 union all select 'grand total' from dual))

 group by client_id, product_id, slice

 order by client_id, product_id;

So pivot can be rewritten with group by, unpivot can be imitated with

a Cartesian product, and group by cube/rollup/grouping sets can be

replaced with a Cartesian product and simple group by. However, built-in

capabilities not only make queries more concise and easier to understand

but have noticeably better performance.

The last thing to mention in this chapter is that aggregate functions can

be nested or mixed up with analytic functions, which is explained in more

detail in Chapter 9, “Logical Execution Order of Query Clauses.”

 Summary
Aggregate functions allow us to calculate a single result row for each group.

In addition to various built-in aggregates, developers can implement their

own UDAG (which also can be used as analytic functions with “over”

clause) or use the collect function to aggregate rows into collection and

apply any logic on top of it using UDF. Most of the built-in aggregates are

commutative so order of rows within a group does not matter; however,

some of them, like listagg or percentile_cont, require order that is specified

after “within group” keywords. Order also matters for collect or xmlagg

functions and may be specified in a function itself.

In a similar manner as it was shown for analytic functions, Oracle

allows us to access first (or last) values from the group according to a

specified order using the keyword keep and functions first/last. This is very

helpful when it’s required to find a min or max value from the group and

corresponding attributes.

Sometimes grouping may help to avoid additional joins; however, such

cases are quite rare. Also grouping can be used instead of pivot to “flatten”

data, but using built-in capabilities are more preferable.

Chapter 4 aggregate FunCtions

119© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_5

CHAPTER 5

Hierarchical Queries:
Connect by
The connect by clause is used to query hierarchies if they are stored as

parent-child relationships, also known as an adjacency lists model. Simply

speaking, this model means that a parent – child pair is stored for each

child. In general adjacency lists can represent directed graphs, not only

hierarchical trees; in this case the list describes the set of neighbors of a

vertex in the graph. So an adjacency list model is much wider and a parent-

child model is one of its implementations.

Listing 5-1 shows the query for building hierarchy based on a parent-

child relationship and using Oracle hierarchical query pseudocolumns.

Listing 5-1. Querying parent-child relationship

create table tree as

select 2 id, 1 id_parent from dual

union all select 3 id, 1 id_parent from dual

union all select 4 id, 3 id_parent from dual

union all select 5 id, 4 id_parent from dual

union all select 11 id, 10 id_parent from dual

union all select 12 id, 11 id_parent from dual

union all select 13 id, 11 id_parent from dual;

120

select connect_by_root id_parent root,

 level lvl,

 rpad(' ', (level - 1) * 3, ' ') || t.id as id,

 prior id_parent grand_parent,

 sys_connect_by_path(id, '->') path,

 connect_by_isleaf is_leaf

 from tree t

 start with t.id_parent in (1, 10)

connect by prior t.id = t.id_parent;

 ROOT LVL ID GRAND_PARENT PATH IS_LEAF

-------- ----------- ------------------------ ---------------

 1 1 2 ->2 1

 1 1 3 ->3 0

 1 2 4 1 ->3->4 0

 1 3 5 3 ->3->4->5 1

 10 1 11 ->11 0

 10 2 12 10 ->11->12 1

 10 2 13 10 ->11->13 1

The following must be specified for building a hierarchy:

• Root – in the example we build two trees with root

parent IDs equal 1 and 10;

• Relationship between parents and children. «prior»

is a unary operator that returns a value of a given

expression (which is column as a rule) for an

immediate parent for the current row.

Other hierarchical queries features demonstrated in Listing 5-1:

• connect_by_root – unary operator that returns an

expression value for the root row.

Chapter 5 hierarChiCal Queries: ConneCt by

121

• level and connect_by_isleaf – pseudocolumns, which

return level (hierarchical depth) and flag whether a

node is leaf or not for each row.

• sys_connect_by_path – function that returns path from

root to node with given separator.

prior operator can be used not just in “connect by” clause but in a select

list as well, but it can be applied to a given expression only once. For example,

if the goal is to select a parent id two levels up, then the prior can be applied to

the id_parent column - see expression for grand_parent in Listing 5-1.

Connect by traverses a hierarchy using a depth-first search approach, so

all descendants for the current node are processed before the next node on

the same level. “Order siblings by” can be used to specify the order within

the same level. In this case, Oracle also will use a depth-first search but the

order of the children for the parent may change. Listing 5-2 shows the result

after specifying «order siblings by t.id desc» in the previous query.

There is no guarantee that first level nodes will be ordered as specified in

“order siblings by” because we cannot say they have a common parent.

Listing 5-2. Ordering siblings

 ROOT LVL ID ----GRAND_PARENT PATH IS_LEAF

-------- --------------- -------------------------- ------

 10 1 11 ->11 0

 10 2 13 10 ->11->13 1

 10 2 12 10 ->11->12 1

 1 1 3 ->3 0

 1 2 4 1 ->3->4 0

 1 3 5 3 ->3->4->5 1

 1 1 2 ->2 1

If connect by is specified in the same query block as joins, then Oracle

processes hierarchical queries as follows: joins (including those specified

in where clause), connect by, all remaining where clause predicates.

Chapter 5 hierarChiCal Queries: ConneCt by

122

Let’s create the following tables for a demonstration:

drop table tree;

drop table nodes;

create table tree(id, id_parent) as

select rownum, rownum - 1 from dual connect by level <= 4;

create table nodes(id, name, sign) as

select rownum, 'name' || rownum, decode(rownum, 3, 0, 1)

 from dual connect by rownum <= 4;

In the second and third queries from Listing 5-3, the filter by sign was

applied before building the hierarchy while in the first query it was applied

after the hierarchy was built.

Listing 5-3. Connect by and joins

select t.*, n.name

 from tree t, nodes n

 where t.id = n.id

 and n.sign = 1

 start with t.id_parent = 0

connect by prior t.id = t.id_parent;

 ID ID_PARENT NAME

---------- ---------- ---

 1 0 name1

 2 1 name2

 4 3 name4

select *

 from (select t.*, n.name

 from tree t, nodes n

 where t.id = n.id

 and n.sign = 1) t

Chapter 5 hierarChiCal Queries: ConneCt by

123

 start with t.id_parent = 0

connect by prior t.id = t.id_parent;

 ID ID_PARENT NAME

---------- ---------- ---

 1 0 name1

 2 1 name2

select t.*, n.name

 from tree t

 join nodes n

 on t.id = n.id

 and n.sign = 1

 start with t.id_parent = 0

connect by prior t.id = t.id_parent;

 ID ID_PARENT NAME

---------- ---------- ---

 1 0 name1

 2 1 name2

The final query after transformations for the original query with an

ANSI join contains a Cartesian join while join predicate moved to the

“start with” and “connect by” clauses. However, more logically it would

be to expect an inline view and connect by on to top it in the transformed

query. So if you build a plan for a transformed query, it will differ from the

original plan for an original query and the join type will be “MERGE JOIN

CARTESIAN.”

select "T"."ID" "ID", "T"."ID_PARENT" "ID_PARENT", "N"."NAME"

"NAME"

 from "TREE" "T", "NODES" "N"

 start with "T"."ID_PARENT" = 0

 and "T"."ID" = "N"."ID"

Chapter 5 hierarChiCal Queries: ConneCt by

124

 and "N"."SIGN" = 1

connect by "T"."ID_PARENT" = prior "T"."ID"

 and "T"."ID" = "N"."ID"

 and "N"."SIGN" = 1

The transformed query for the first query from Listing 5-3 also looks

a bit unexpected – as you see the join condition moved from the where

clause to “start with” and “connect by.”

select "T"."ID" "ID", "T"."ID_PARENT" "ID_PARENT", "N"."NAME"

"NAME"

 from "TREE" "T", "NODES" "N"

 where "N"."SIGN" = 1

 start with "T"."ID_PARENT" = 0

 and "T"."ID" = "N"."ID"

connect by "T"."ID_PARENT" = prior "T"."ID"

 and "T"."ID" = "N"."ID"

Let me emphasize again that plans for these transformed and original

queries are different; and even though they are semantically equivalent,

performance for queries with transformed text will be much worse

because the hierarchy will be built on top of Cartesian joins.

Speaking about outer joins, there is no difference whether they

specified in “join” or “where” clause because the predicate containing (+)

will be evaluated before building the hierarchy.

Also it’s worth mentioning that if the goal is to get all the descendants

up to a specific level, then it makes sense to specify a filter by “level <= n”

in “connect by” condition instead of a where clause because in this case,

building a hierarchy will stop at a specific level. Otherwise the hierarchy

will be built for all levels and the where filter will be applied after that.

Another important point is that the connect by condition evaluates

only for nodes with a level greater than 1. A first level node must be

filtered using a “start with” clause. For example, all first level nodes will be

Chapter 5 hierarChiCal Queries: ConneCt by

125

returned regardless of whether you specify “level <= 1” or “level <= 0” in

the connect by condition.

Connect by allows you to traverse directed graphs even if they contain

cycles. See Figure 5-1.

Figure 5-1. Directed graph

with graph (id, id_parent) as

(select 2, 1 from dual

union all select 3, 1 from dual

union all select 4, 3 from dual

union all select 5, 4 from dual

union all select 3, 5 from dual)

select level lvl, graph.*, connect_by_iscycle cycle

 from graph

 start with id_parent = 1

connect by nocycle prior id = id_parent;

Chapter 5 hierarChiCal Queries: ConneCt by

126

 LVL ID ID_PARENT CYCLE

---------- ---------- ---------- ----------

 1 2 1 0

 1 3 1 0

 2 4 3 0

 3 5 4 1

Node with id = 3 is a child node for node with c id = 5 and it was

already processed when we visited node with id = 5. In this case, building

a hierarchy stops for the node and it’s marked as a cycle. In other words,

connect_by_iscycle equals to 1 if the current row has a child that is also its

ancestor.

In general case, neither “start with” nor the prior operator is mandatory

when using the “connect by” clause. This is often used to generate

sequences. A few approaches are shown in Listing 5-4.

Listing 5-4. Generating sequences using connect by

select level id from dual connect by level <= 10;

select rownum id from dual connect by rownum <= 10;

select rownum id from (select * from dual connect by 1 = 1)

 where rownum <= 10;

No cycles are identified for these queries because the parent record

is not referred to in the connect by condition using the prior operator.

So the cycle cannot exist when there is no parent-child relationship. Try

to execute any of the queries from Listing 5-4 after adding the predicate

«prior 1 = 1» to “connect by” condition.

Documentation says that “in a hierarchical query, one expression in

[connect by] condition must be qualified with the PRIOR operator to refer

to the parent row.” So if you want to refer to the parent row then you must

use the prior operator but you are not forced to refer to it – that is, connect

by can be used not only to traverse hierarchies.

Chapter 5 hierarChiCal Queries: ConneCt by

127

The key point for the prior operator is that the value referenced in

it must exist before building the hierarchy. Also when you use a prior

operator you cannot refer columns calculated in a hierarchical query.

This is saying that it’s not possible to calculate values for child nodes

cumulatively. However, there is no such limitation for Recursive subquery

factoring as will be shown in the next chapter.

To demonstrate this limitation let’s consider a task when the goal is

to generate the same sequence as function f returns (type numbers was

defined in the section “Unnesting Collections”).

create or replace function f(n in number) return numbers as

 result numbers := numbers();

begin

 result.extend(n + 1);

 result(1) := 1;

 for i in 2 .. n + 1 loop

 result(i) := round(100 * sin(result(i - 1) + i - 2));

 end loop;

 return result;

end f;

/

So the function returns a recursive sequence such as current value

equals to sine of the sum of previous value and its index multiplied by

100 and rounded to integer. i-2 is used in the code because the elements

indexed starting with zero.

To highlight the recursive nature of the sequence, it also can be defined

using the recursive function.

Chapter 5 hierarChiCal Queries: ConneCt by

128

create or replace function f(n in number) return numbers as

 result numbers;

begin

 if n = 0 then return numbers(1);

 else

 result := f(n - 1);

 result.extend;

 result(n + 1) := round(100 * sin(result(n) + n - 1));

 return result;

 end if;

end f;

/

Given that sine values fall in a range [-1; 1] and function values are

multiplied by 100 and rounded to integers, it’s possible to generate all

possible values for the sequence – range [-100; 100]. With this assumption

the sequence can be generated using “connect by.”

The query in Listing 5-5 generates only the first 14 values instead of 21

because the 14th row is identified as a cycle.

Listing 5-5. Generating values of the recursive sequence using

connect by

with t as

 (select -100 + level - 1 result from dual connect by level <= 201)

select level - 1 as id, result, connect_by_iscycle cycle

 from t

 start with result = 1

connect by nocycle round(100 * sin(prior result + level - 2)) =

result

 and level <= 21;

Chapter 5 hierarChiCal Queries: ConneCt by

129

 ID RESULT CYCLE

---------- ---------- ----------

 0 1 0

 1 84 0

 2 -18 0

 3 29 0

 4 55 0

 5 64 0

 6 -11 0

 7 96 0

 8 62 0

 9 77 0

 10 -92 0

 11 -31 0

 12 -91 0

 13 44 1

The trick with adding “prior sys_guid() is not null” to “connect

by” clause helps if we want to avoid cycles and generate all the elements.

sys_guid() returns unique values so none of the rows generated so far are

considered the same as a child row for the current row; thus no cycles are

identified. Please refer to Listing 5-6 to see this approach in action.

Listing 5-6. Handling elements with the same values while

generating the recursive sequence

with t as

 (select -100 + level - 1 result from dual connect by level <= 201)

select level - 1 as id, result, connect_by_iscycle cycle

 from t

 start with result = 1

Chapter 5 hierarChiCal Queries: ConneCt by

130

connect by nocycle round(100 * sin(prior result + level - 2)) =

result

 and prior sys_guid() is not null

 and level <= 21;

 ID RESULT CYCLE

---------- ---------- ----------

 0 1 0

 1 84 0

 2 -18 0

 3 29 0

 4 55 0

 5 64 0

 6 -11 0

 7 96 0

 8 62 0

 9 77 0

 10 -92 0

 11 -31 0

 12 -91 0

 13 44 0

 14 44 0

 15 99 0

 16 78 0

 17 -25 0

 18 -99 0

 19 63 0

 20 31 0

Now we see that no cycles were identified and so we can remove the

nocycle keyword.

Chapter 5 hierarChiCal Queries: ConneCt by

131

Summarizing the details of cycle identification:

• Cycle can be identified only if the “connect by”

condition contains a “prior” operator.

• If we apply a “prior” operator to any function retuning

unique values, then the cycle will not be identified

because in this case rows with the same values are not

considered as the same nodes of the hierarchy.

The demonstrated approach for running over pre-generated values

can be used even if the recursive formula refers values on two previous

iterations, but in this case it’s necessary to generate all the possible pairs of

previous element and the one before it. Listing 5-7 shows how to generate

Fibonacci numbers using this approach.

Listing 5-7. Generating Fibonacci numbers using connect by

with t as

 (select rownum id from dual connect by rownum <= power(2, 15)

/ 15),

pairs as

 (select t1.id id1, t2.id id2

 from t t1, t t2

 where t2.id between (1 / 2) * t1.id and (2 / 3) * t1.id

 union all

 select 1, 0 from dual

 union all

 select 1, 1 from dual)

select rownum lvl, id2 fib

 from pairs

 start with (id1, id2) in ((1, 0))

connect by prior id1 = id2

 and prior (id1 + id2) = id1

 and level <= 15;

Chapter 5 hierarChiCal Queries: ConneCt by

132

 LVL FIB

---------- ----------

 1 0

 2 1

 3 1

 4 2

 5 3

 6 5

 7 8

 8 13

 9 21

 10 34

 11 55

 12 89

 13 144

 14 233

 15 377

15 rows selected.

We may notice that Fi < 2i/i and Fi-1 between ½ * Fi and ¾ *Fi for all

elements greater than 1 and these conditions were used to reduce the

number of pre-generated pairs. Unlike the previous example, there

is no need to use a trick with prior sys_guid because the sequence is

monotonically increasing for all elements greater than 1 so it’s not possible

to face a cycle.

Elapsed time grows exponentially depending on the level and such

an approach cannot be used in real-life tasks; the main intention was to

demonstrate specifics of the “connect by” clause.

The trick with sys_guid can also be used to generate the number of

copies for each row.

Chapter 5 hierarChiCal Queries: ConneCt by

133

with t as

 (select 'A' value, 2 cnt from dual

 union all

 select 'B' value, 3 cnt from dual)

select *

 from t

connect by level <= cnt

 and prior value = value

 and prior sys_guid() is not null;

V CNT

- ----------

A 2

A 2

B 3

B 3

B 3

As you can see, there is no “start with” condition in a query so the first

level contains all the rows and connection is performed in the scope of

each value until the cnt rows are generated. The trick with sys_guid was

used to avoid cycles, given that all the rows for each root have the same

values. There are many other ways to generate a specified number of

copies for each row and connect by is not the best way to do that.

We can also use this trick while traversing directed graphs. It prevents

Oracle from identifying cycles so the same cycle may be traversed multiple

times. The cycle column equals to zero for all rows as expected.

select level lvl, graph.*, connect_by_iscycle cycle

 from graph

 start with id_parent = 1

Chapter 5 hierarChiCal Queries: ConneCt by

134

connect by nocycle prior id = id_parent

 and prior sys_guid() is not null

 and level <= 10;

 LVL ID ID_PARENT CYCLE

---------- ---------- ---------- ----------

 1 2 1 0

 1 3 1 0

 2 4 3 0

 3 5 4 0

 4 3 5 0

 5 4 3 0

 6 5 4 0

 7 3 5 0

 8 4 3 0

 9 5 4 0

 10 3 5 0

If the goal is to select all the edges including the one closing the cycle,

then we can add the condition “prior id_parent is not null” as shown in

Listing 5-8. In this case the cycle will be identified if we visited the same

node twice. Additional details can be found in the section “Once Again

About Cycles” in the next chapter.

Listing 5-8. Affecting cycle detection by adding “prior id_parent is

not null”

select level lvl, graph.*, connect_by_iscycle cycle

 from graph

 start with id_parent = 1

connect by nocycle prior id = id_parent

 and prior id_parent is not null;

Chapter 5 hierarChiCal Queries: ConneCt by

135

 LVL ID ID_PARENT CYCLE

---------- ---------- ---------- ----------

 1 2 1 0

 1 3 1 0

 2 4 3 0

 3 5 4 0

 4 3 5 1

 Pseudocolumn Generation in Detail
We already considered how join, connect by, and where clauses work

in hierarchical queries. When a query contains pseudocolumns it’s not

possible to say that their values are generated before or after a specific

query clause, but we can state the following rules:

• level is incremented when a row for a new level is

generated

• rownum is incremented when a new row is added to a

result set

Listing 5-9 demonstrates the above statements, based on an example

Listing 5-9. Specific of level and rownum pseudocolumns generation

create table t_two_branches(id, id_parent) as

(select rownum, rownum - 1 from dual connect by level <= 10

union all

select 100 + rownum, 100 + rownum - 1 from dual connect by

level <= 10

union all

select 0, null from dual

Chapter 5 hierarChiCal Queries: ConneCt by

136

union all

select 100, null from dual);

select rownum rn,

 level lvl,

 replace(sys_connect_by_path(rownum, '~'), '~') as path_rn,

 replace(sys_connect_by_path(level, '~'), '~') as path_lvl,

 sys_connect_by_path(id, '~') path_id

 from t_two_branches

 where mod(level, 3) = 0

start with id_parent is null

connect by prior id = id_parent;

 RN LVL PATH_RN PATH_LVL PATH_ID

------ -------- ------- ------------ --------------------------

 1 3 111 123 ~0~1~2

 2 6 111222 123456 ~0~1~2~3~4~5

 3 9 111222333 123456789 ~0~1~2~3~4~5~6~7~8

 4 3 444 123 ~100~101~102

 5 6 444555 123456 ~100~101~102~103~104~105

 6 9 444555666 123456789 ~100~101~102~103~104~105

 ~106~107~108

6 rows selected.

For each of the two branches Oracle generated 9 levels and 3

rows: rows 1-3 for the first branch and rows 4-6 for the second branch.

Columns path_rn and path_lvl help us to understand how values for

pseudocolumns were generated. Technically, the “where” clause evaluates

when a hierarchy is being built, not afterward.

Also it’s interesting to point out the difference when a rownum/level is

used in a “connect by.”

Chapter 5 hierarChiCal Queries: ConneCt by

137

Listing 5-10. Difference between using level and rownum in

“connect by” condition

select rownum rn,

 level lvl,

 replace(sys_connect_by_path(rownum, '~'), '~') as path_rn,

 replace(sys_connect_by_path(level, '~'), '~') as path_lvl,

 sys_connect_by_path(id, '~') path_id

 from t_two_branches

start with id_parent is null

connect by prior id = id_parent

and rownum <= 2;

 RN LVL PATH_RN PATH_LVL PATH_ID

---------- ---------- --------------- --------------- ---------

 1 1 1 1 ~0

 2 2 12 12 ~0~1

 3 1 3 1 ~100

select rownum rn,

 level lvl,

 replace(sys_connect_by_path(rownum, '~'), '~') as path_rn,

 replace(sys_connect_by_path(level, '~'), '~') as path_lvl,

 sys_connect_by_path(id, '~') path_id

 from t_two_branches

start with id_parent is null

connect by prior id = id_parent

and level <= 2;

Chapter 5 hierarChiCal Queries: ConneCt by

138

 RN LVL PATH_RN PATH_LVL PATH_ID

---------- ---------- --------------- -------- ----------------

 1 1 1 1 ~0

 2 2 12 12 ~0~1

 3 1 3 1 ~100

 4 2 34 12 ~100~101

In the first case Oracle returns two rows for the first branch and a root

row for the second branch. Although the “connect by” condition is false

for it, “start with” is true; thus all the roots are present in the result. In the

second case Oracle simply traverses all the branches up to a specified level,

and obviously the rownum monotonically increases.

 Summary
The “connect by” clause is one of Oracle’s specific features and can be used

for traversing parent-child hierarchies or generating sequences without

parent-child dependencies. In general, this feature allows traversing any

directed graphs and a nocycle keyword can be used to handle cycles.

Chapter 5 hierarChiCal Queries: ConneCt by

139© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_6

CHAPTER 6

Recursive Subquery
Factoring
A subquery factoring clause (sometimes also referred to as a “with clause”

or CTE – common table expression) was introduced in Oracle 9.2. At that

time it did not allow us to define recursive subqueries and was mainly

used to decompose the logic into named queries – factor out subqueries

and reference them by names in the main query. CBO can decide whether

to materialize results of factored out subqueries or plug them in as inline

views. In the former case it can improve performance if the named query is

referenced multiple times in the main query, while in the latter case it may

have a negative impact on the performance because the transformation

engine doesn’t treat named queries in the same way as inline views. For

example, on older versions Oracle could have merged an inline view but

not the named query with exactly the same text.

Starting with Oracle 11.2, the subquery factoring clause allows us to

execute a query recursively if a subquery references its own name, which is

presented schematically in Listing 6-1.

Listing 6-1. Recursive subquery factoring

with rec as

(

anchor_query_text - anchor member

union all

140

recursive_query_text – recursive member referencing rec

)

select *

from rec

The following algorithm is used for execution:

 1. Run anchor member to get base result set Set0.

 2. Execute recursive member with result set Seti-1 from

previous iteration.

 3. Repeat step 2 until empty result set is returned.

 4. Return final result set, which is the union all of

Set0 … Setn.

The query in Listing 6-2 traverses the trees from the tree table

introduced in the previous chapter (Listing 5-1). You may notice that the

order of the result differs from the “connect by” approach.

Listing 6-2. Building hierarchies using recursive subquery factoring

with rec(lvl, id, path) as

(

select 1 lvl, id, cast('->' || id as varchar2(4000))

 from tree where id_parent in (1, 10)

union all

select r.lvl + 1, t.id, r.path || '->' || t.id

 from tree t

 join rec r on t.id_parent = r.id

)

select lvl,

 rpad(' ', (lvl - 1) * 3, ' ') || id as id,

 path

 from rec;

Chapter 6 reCursive subquery FaCtoring

141

 LVL ID PATH

---------- ---------- ----------

 1 2 ->2

 1 3 ->3

 1 11 ->11

 2 4 ->3->4

 2 12 ->11->12

 2 13 ->11->13

 3 5 ->3->4->5

To return the result in the same order as “connect by” does, you must

specify “search depth first” – in this case all the descendants for the

node will be returned before the other nodes on its level – see Listing 6-3.

Default ordering is “search breadth first” so all nodes from previous

levels are returned before nodes on the current level. As it will be shown

in section “Traversing Hierarchies,” order impacts only how results are

returned, not the way of traversing a hierarchy.

Listing 6-3. Getting the same result as connect by

with rec(root, lvl, id, id_parent, grand_parent) as

(

select id_parent, 1 lvl, id, id_parent, cast(null as number)

 from tree where id_parent in (1, 10)

union all

select r.root, r.lvl + 1, t.id, t.id_parent, r.id_parent

 from tree t

 join rec r on t.id_parent = r.id

)

search depth first by id set ord

select root,

 lvl,

 rpad(' ', (lvl - 1) * 3, ' ') || id as id,

Chapter 6 reCursive subquery FaCtoring

142

 id_parent,

 grand_parent,

 ord,

 decode(lvl + 1, lead(lvl) over(partition by root order

by ord), 0, 1) is_leaf

 from rec;

 ROOT LVL ID ID_PARENT GRAND_PARENT ORD IS_LEAF

------- ------ -------- ---------- ------------ ------ --------

 1 1 2 1 1 1

 1 1 3 1 2 0

 1 2 4 3 1 3 0

 1 3 5 4 3 4 1

 10 1 11 10 5 0

 10 2 12 11 10 6 1

 10 2 13 11 10 7 1

7 rows selected.

There are no predefined pseudocolumns for recursive subquery

factoring so the calculation logic should be implemented manually. For

example, a node is not a leaf node if it’s followed by node on the next level

when search depth first is specified – this logic was used to calculate is_leaf

column.

Mechanics of calculating a path from the previous example is a

bit more interesting. An expression for a path references a path from a

previous iteration. This is one of the most important differences from

“connect by,” which allows referencing only existing columns (not

calculated ones). So if the goal is to calculate a path not from the root to

the current node but in the opposite direction – from current node to root,

then it can be done by replacing “r.path || '->' || t.id” with “'->'

|| t.id || r.path”. On the other hand, it’s not possible with connect by

and built-in capabilities.

Chapter 6 reCursive subquery FaCtoring

143

Listing 6-4 shows how recursive sequences from the previous chapter

can be generated using recursive subquery factoring. In the first case the

current value depends only on the previous value while in the second case

it depends on the previous value and the one before it. Recursive subquery

factoring allows referring only values from previous iteration so in order

to be able to use values from an i-2 iteration, we introduced an auxiliary

column.

Listing 6-4. Generating of recursive sequences

with t(id, result) as

(

select 0 id, 1 result from dual

union all

select t.id + 1, round(100 * sin(t.result + t.id))

 from t

 where t.id < 20

)

select * from t;

with t (lvl, result, tmp) as

(

select 1, 0, 1 from dual

union all

select lvl + 1, tmp, tmp + result

 from t

 where lvl < 15)

select lvl, result from t;

If we need to use values from several previous iterations, we can either

add multiple auxiliary columns or use a collection column.

Anyway, such approaches are much more efficient than “connect by”

because there is no need for running over pre-generated values to generate

each new row.

Chapter 6 reCursive subquery FaCtoring

144

As it was already mentioned, recursive subquery factoring allows

referring values calculated on a previous iteration. This technique can

be used for root-finding using the bisection method. This method is

demonstrated purely to highlight capabilities of the SQL language, and

there is no practical need to use SQL for this task.

Let’s consider function y, which has different signs in points 1 and 2.

create or replace function y(x in number) return number as

begin return x*x - 2; end;

Listing 6-5 shows how to find the root in the range [1; 2] with

precision 0.01.

Listing 6-5. Finding the root using bisection method and recursive

subquery factoring clause

with t(id, x, x0, x1) as

(

 select 0, 0, 1, 2

 from dual

 union all

 select t.id + 1,

 (t.x0 + t.x1) / 2,

 case

 when sign(y(x0)) = sign(y((t.x0 + t.x1) / 2))

 then (t.x0 + t.x1) / 2

 else x0

 end,

 case

 when sign(y(x1)) = sign(y((t.x0 + t.x1) / 2))

 then (t.x0 + t.x1) / 2

 else x1

 end

Chapter 6 reCursive subquery FaCtoring

145

 from t

 where abs((t.x0 + t.x1) / 2 - t.x) > 1e-2

)

select t.*, (x0+x1)/2 result from t;

 ID X X0 X1 RESULT

---------- ---------- ---------- ---------- ----------

 0 0 1 2 1.5

 1 1.5 1 1.5 1.25

 2 1.25 1.25 1.5 1.375

 3 1.375 1.375 1.5 1.4375

 4 1.4375 1.375 1.4375 1.40625

 5 1.40625 1.40625 1.4375 1.421875

 6 1.421875 1.40625 1.421875 1.4140625

The algorithm divides the range on each step according to following

rule: if sign of the function in the midpoint is the same as at the right border,

then move the right border to the midpoint or else move the left border to

the midpoint. Repeat iterations unless the difference between the midpoint

on the current step and the midpoint on the previous step is less than 0.01.

Required precision was satisfied on the 6th iteration and the found

root is a midpoint on the next iteration, which is 1.4140625.

Range borders on each iteration were calculated using values from

a previous iteration. It would not be possible to use “connect by” to

implement this approach. The term “iteration” instead of level was used to

highlight the iterative nature of the algorithm.

Chapter 6 reCursive subquery FaCtoring

146

 Traversing Hierarchies
Documentation says that the «subquery_factoring_clause supports

recursive subquery factoring (recursive WITH) and lets you query

hierarchical data. This feature is more powerful than CONNECT BY
in that it provides depth-first search and breadth-first search, and

supports multiple recursive branches». It sounds like “connect by”

always does depth-first search while a traversing algorithm for recursive

subquery factoring can be affected by specifying depth-first or breadth-

first in search_clause. Let’s check whether this is the correct impression

or not.

Function stop_at sets a flag if a specific node was visited and returns a

not null value if the flag is set.

create or replace function stop_at(p_id in number, p_stop in

number)

 return number is

begin

 if p_id = p_stop then

 dbms_application_info.set_client_info('1');

 return 1;

 end if;

 for i in (select client_info from v$session where sid =

userenv('sid')) loop

 return i.client_info;

 end loop;

end;

Chapter 6 reCursive subquery FaCtoring

147

Listing 6-6. Specifying breadth-first and depth-first search

exec dbms_application_info.set_client_info('');

PL/SQL procedure successfully completed.

with rec(lvl, id) as

(

select 1, id

 from t_two_branches where id_parent is null

union all

select r.lvl + 1, t.id

 from t_two_branches t

 join rec r on t.id_parent = r.id

 where stop_at(t.id, 101) is null

)

search breadth first by id set ord

--search depth first by id set ord

select *

from rec;

 LVL ID ORD

---------- ---------- ----------

 1 0 1

 1 100 2

 2 1 3

exec dbms_application_info.set_client_info('');

PL/SQL procedure successfully completed.

with rec(lvl, id) as

(

select 1, id

 from t_two_branches where id_parent is null

Chapter 6 reCursive subquery FaCtoring

148

union all

select r.lvl + 1, t.id

 from t_two_branches t

 join rec r on t.id_parent = r.id

 where stop_at(t.id, 101) is null

)

--search breadth first by id set ord

search depth first by id set ord

select *

from rec;

 LVL ID ORD

---------- ---------- ----------

 1 0 1

 2 1 2

 1 100 3

Oracle 11.2 and 12.1 return only 3 rows in both cases; however it was

expected that a query will return all nodes for the first branch for depth-

first search because none of them equals 101. So it looks like irrespective

of whatever approach we specify in the search clause, Oracle always does a

breadth-first search and after that orders a result accordingly. On the other

hand, Oracle 12.2 returns the following results.

 LVL ID ORD

---------- ---------- ----------

 1 0 1

 1 100 2

 2 1 3

 3 2 4

 4 3 5

 5 4 6

 6 5 7

Chapter 6 reCursive subquery FaCtoring

149

 7 6 8

 8 7 9

 9 8 10

 10 9 11

 11 10 12

12 rows selected.

 LVL ID ORD

---------- ---------- ----------

 1 0 1

 2 1 2

 3 2 3

 4 3 4

 5 4 5

 6 5 6

 7 6 7

 8 7 8

 9 8 9

 10 9 10

 11 10 11

 1 100 12

12 rows selected.

This means that it does a depth-first search regardless of whatever

is specified in the search_clause – in both cases all the nodes for the first

branch are returned.

Let’s now check the result for connect by.

Chapter 6 reCursive subquery FaCtoring

150

select rownum rn, level lvl, id, id_parent

 from t_two_branches

 start with id_parent is null

connect by prior id = id_parent

 and stop_at(id, 101) is null;

 RN LVL ID ID_PARENT

---------- ---------- ---------- ----------

 1 1 0

 2 2 1 0

 3 3 2 1

 4 4 3 2

 5 5 4 3

 6 6 5 4

 7 7 6 5

 8 8 7 6

 9 9 8 7

 10 10 9 8

 11 11 10 9

 12 1 100

12 rows selected.

It’s the same as for the recursive subquery factoring on 12.2 and depth-

first search.

To summarize, connect by always traverses a hierarchy using a depth-

first search while the behavior for he recursive subquery factoring has

changed from for breadth-first to depth-first search in version 12.2. The

search_clause has an impact only on the final order, not on the algorithm

Oracle uses to traverse the hierarchy. For connect by it’s easy to mimic a

breath-first search by ordering a result by level.

Chapter 6 reCursive subquery FaCtoring

151

 Once Again About Cycles
Let’s investigate how to handle a cycle using recursive subquery factoring

and a graph table from the previous chapter (Figure 5-1).

Listing 6-7. Detecting cycle by ID

with t(id, id_parent) as

(

select * from graph where id_parent = 1

union all

select g.id, g.id_parent

 from t

 join graph g on t.id = g.id_parent

)

search depth first by id set ord

cycle id set cycle to 1 default 0

select * from t;

 ID ID_PARENT ORD CYCLE

---------- ---------- ---------- ----------

 2 1 1 0

 3 1 2 0

 4 3 3 0

 5 4 4 0

 3 5 5 1

“cycle id set cycle to 1 default 0” instructs Oracle to set the “cycle”

column to 1 if cycle by id is detected. Oracle will not look for child rows for

the offending row, but it will continue to look for other noncyclic rows. A

row is considered to form a cycle if one of its ancestor rows has the same

values for the cycle columns. In other words, if row is marked as a cycle,

Chapter 6 reCursive subquery FaCtoring

152

then one of the existing rows in the result set has the same value in the

specified column.

In the above example, the row with ID = 3 was marked as a cycle

because ID = 3 already existed in a result. In the case of a “connect by”

clause the row with ID = 5 was marked as a cycle because its child (row

with ID = 3) is also its ancestor – see Figure 5-1 in the previous chapter.

Unlike connect by, we can specify which column to use to detect a

cycle. So if we specify id_parent in a cycle_clause, then the result will be a

bit different – the execution stops when we face a node with ID_PARENT = 3

for a second time.

Listing 6-8. Detecting cycle by ID_PARENT

with t(id, id_parent) as

(

select * from graph where id_parent = 1

union all

select g.id, g.id_parent

 from t

 join graph g on t.id = g.id_parent

)

search depth first by id set ord

cycle id_parent set cycle to 1 default 0

select * from t;

 ID ID_PARENT ORD C

---------- ---------- ---------- -

 2 1 1 0

 3 1 2 0

 4 3 3 0

 5 4 4 0

 3 5 5 0

 4 3 6 1

Chapter 6 reCursive subquery FaCtoring

153

We may notice that cycle by ID was identified in the same row as it was

for the connect by query and condition “nocycle prior id = id_parent and
prior id_parent is not null” (see Listing 5-8). However, it’s not always the

case. If the root node is part of the cycle, then results may differ. Let’s have

a look at the result when we start from the node with ID = 3.

Listing 6-9. Building hierarchy from the node which is part of the

cycle

select level lvl, graph.*, connect_by_iscycle cycle

 from graph

 start with id = 3

connect by nocycle prior id = id_parent;

 LVL ID ID_PARENT CYCLE

---------- ---------- ---------- ----------

 1 3 1 0

 2 4 3 0

 3 5 4 1

 1 3 5 0

 2 4 3 0

 3 5 4 1

select level lvl, graph.*, connect_by_iscycle cycle

 from graph

 start with id = 3

connect by nocycle prior id = id_parent

 and prior id_parent is not null;

Chapter 6 reCursive subquery FaCtoring

154

 LVL ID ID_PARENT CYCLE

---------- ---------- ---------- ----------

 1 3 1 0

 2 4 3 0

 3 5 4 0

 4 3 5 1

 1 3 5 0

 2 4 3 0

 3 5 4 1

with t(id, id_parent) as

(

select * from graph where id = 3

union all

select g.id, g.id_parent

 from t

 join graph g on t.id = g.id_parent

)

search depth first by id set ord

cycle id set cycle to 1 default 0

select * from t;

 ID ID_PARENT ORD C

---------- ---------- ---------- -

 3 1 1 0

 4 3 2 0

 5 4 3 0

 3 5 4 1

 3 5 5 0

 4 3 6 0

 5 4 7 0

 3 5 8 1

Chapter 6 reCursive subquery FaCtoring

155

The node with ID = 3 has two parents so we traverse the cycle two times.

In the last query in the second cycle, edge (5, 3) appears twice because

ID with the same value must appear twice to detect a cycle. On the other

hand, the result of the second query from Listing 6-9 looks the most

natural because for both cycles it contains all the edges forming the cycle

without any recurrences.

In addition to built-in capabilities to detect cycles we can implement

our own logic as shown in Listing 6-10. cnt1 is the number of occurrences

of ID in the concatenation of ancestor IDs, similarly cnt2 is the number of

occurrences of ID in the concatenation of ancestor PARENT_IDs. If you

uncomment filters by cnt1/cnt2, then the result will be the same as for

recursive subquery factoring/connect by queries from Listing 6-9. There is

no need to specify cycle_clause when such filters are used.

Listing 6-10. Manual implementation of the logic to detect cycles

with t(id, id_parent, path_id, path_id_parent, cnt1, cnt2) as

(

select g.*,

 cast('->' || g.id as varchar2(4000)),

 cast('->' || g.id_parent as varchar2(4000)),

 0,

 0

 from graph g

 where id = 3

union all

select g.id,

 g.id_parent,

 t.path_id || '->' || g.id,

 t.path_id_parent || '->' || g.id_parent,

 regexp_count(t.path_id || '->', '->' || g.id || '->'),

Chapter 6 reCursive subquery FaCtoring

156

 regexp_count(t.path_id_parent || '->', '->' || g.id

|| '->')

 from t

 join graph g

 on t.id = g.id_parent

-- and t.cnt1 = 0

-- and t.cnt2 = 0

)

search depth first by id set ord

cycle id set cycle to 1 default 0

select * from t;

 ID ID_PARENT PATH_ID PATH_ID_PARENT CNT1 CNT2 ORD C

---- --------- ------------- --------------- ----- ----- ---- -

 3 1 ->3 ->1 0 0 1 0

 4 3 ->3->4 ->1->3 0 0 2 0

 5 4 ->3->4->5 ->1->3->4 0 0 3 0

 3 5 ->3->4->5->3 ->1->3->4->5 1 1 4 1

 3 5 ->3 ->5 0 0 5 0

 4 3 ->3->4 ->5->3 0 0 6 0

 5 4 ->3->4->5 ->5->3->4 0 1 7 0

 3 5 ->3->4->5->3 ->5->3->4->5 1 1 8 1

 Limitations of the Current Implementation
The query in a recursive member has a number of limitations; in

particular, you cannot use distinct, group by, having, connect by, aggregate

functions, model, etc., in it. One may ask whether this is a limitation of

the current implementation or the recursive execution does not make

sense when such a complex logic is used. My inclination is that some of

these limitations will be removed in the future. On the other hand, we can

Chapter 6 reCursive subquery FaCtoring

157

use workarounds for some limitations even in the current version, but

that may look a bit awkward. In particular, we can use analytic functions

and additional filters to get an aggregated result – although this is not

something to be used in real-life tasks.

The following will be demonstrated mainly for academic purposes. So,

let’s assume we need to build a parent–child hierarchy where the parent is

the sum of all IDs on the current level.

with t0(id, id_parent, letter) as

(select 1, 0, 'B' from dual

union all select 2, 1, 'D' from dual

union all select 3, 1, 'A' from dual

union all select 10, 5, 'C' from dual

union all select 66, 6, 'X' from dual),

t(id, id_parent, sum_id, lvl, str, rn) as

(select id, id_parent, id, 1, letter, 1 from t0 where

id_parent = 0

 union all

 select

 t0.id,

 t0.id_parent,

 sum(t0.id) over (),

 t.lvl + 1,

 listagg(letter, ', ') within group (order by letter) over

(),

 rownum

 from t

 join t0 on t.sum_id = t0.id_parent and t.rn = 1)

select * from t;

Chapter 6 reCursive subquery FaCtoring

158

 ID ID_PARENT SUM_ID LVL STR RN

------- ---------- ---------- -------- ---------- --------

 1 0 1 1 B 1

 3 1 5 2 A, D 2

 2 1 5 2 A, D 1

 10 5 10 3 C 1

Analytic functions were used instead of aggregate ones and “t.rn = 1”

was added to the join condition to avoid duplicates, because the value of

the analytic function is the same for all rows and they are not grouped into

one row per group.

If we are interested only in an aggregated result for each level, then it

can be achieved using a query like this:

select sum_id, lvl, str from t where rn = 1;

Analytic functions in a recursive member would cause «ORA-32486:

unsupported operation in recursive branch of recursive WITH clause» in

Oracle 11.2.0.1; however it was fixed in 11.2.0.3.

 Summary
“Recursive with” is defined in standard SQL:1999 while the “connect by”

clause is an Oracle-specific feature. Nevertheless, it makes sense to use

connect by instead of recursive subquery factoring in all cases where

it’s possible, because it’s better optimized and works faster. As it was

mentioned previously, it’s not possible to reference calculated expressions

in “connect by” queries while recursive with provides this facility. So if any

cumulative-like calculations are required while traversing a hierarchy,

then recursive subquery factoring may be the best option.

Traversing hierarchies is not the only application of recursive subquery

factoring. It can be used for various tasks when the same logic has to be

applied to a recordset multiple times. It’s important to highlight that the

Chapter 6 reCursive subquery FaCtoring

159

final result contains recordsets from all the iterations while on current

iteration it’s possible to access rows only from the previous one. The

necessity to return recordsets from all the iterations may cause intensive

work area usage and other overhead costs. So if you do not need recordsets

from all iterations but only from the last one, then it’s reasonable to use

PL/SQL loops and collections or temporary tables.

Even though recursive subquery factoring and connect by have built-

in capabilities to handle cycles, it makes sense to use them only in trivial

cases. For more complex cases, procedural approaches are better. Anyway,

connect by and recursive subquery factoring handle cycle a bit differently

so it may be important to know the details.

Chapter 6 reCursive subquery FaCtoring

161© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_7

CHAPTER 7

Model
One may say that the model clause is the most powerful SQL feature,

meaning that it can be used to solve numerous tasks that otherwise would

not be resolvable using SQL. This can be accomplished not only because

the model clause considerably extends possibilities of declarative SQL,

but in addition to that it introduces ability of iterative computations in

SQL on top of a recordset. On the other hand, the model clause has some

issues with scalability and, in general, a class of problems where the model

shines is quite limited. In many cases PL/SQL is preferable even though a

result can be achieved using a model clause, but first things first.

A model clause allows you to treat a recordset as a multidimensional

cube by mapping columns into three groups: partitions, dimensions, and

measures.

• Partitions specify logical groups and rules of the model

are applied to partitions independently. Specifying

partitions may help to dramatically leverage power of

parallel execution.

• Dimension columns are used to define a

multidimensional cube and, by default, a combination

of all the dimensions uniquely identifies cells in the

cube. From another perspective we may say – to

uniquely identify a row in a spreadsheet or a value in a

multidimensional array.

162

• Measures are values of multidimensional cubes

that can be calculated using model rules. As a rule,

measures are numeric values but, unlike many others

tools for multidimensional analysis, Oracle supports

dates and strings or even RAW values as measures.

Partitions, dimensions, and measures can be specified not only as

mappings to columns of the query but also as expressions.

Let’s see how it works using an example from Listing 7-1.

Listing 7-1. Basic example of the model clause

with t(id, value) as

(

select 1, 3 from dual

union all select 2, 9 from dual

union all select 3, 8 from dual

union all select 5, 5 from dual

union all select 10, 4 from dual

)

select * from t

model

-- return updated rows

dimension by (id)

measures (value, 0 result)

-- rules

(

 result[id >= 5] = sum(value)[id <= cv(id)],

 result[0] = value[10] + value[value[1]]

);

Chapter 7 Model

163

 ID VALUE RESULT

---------- ---------- ----------

 1 3 0

 2 9 0

 3 8 0

 5 5 25

 10 4 29

 0 12

We defined a single dimension by ID column and two measures: one

as mapped to a value column and another one as a zero.

Rule result[id >= 5] = sum(value)[id <= cv(id)] is applied only

to rows with dimension values greater or equal to 5, which means two rows

in our example – with ID = 5 and ID = 10. The value of the expression is a

summarized measure for all the rows with dimension value equal or less

than the current dimension value. The function cv is used on the right

side of the rule to access current dimension value when multiple rows are

referenced on the left side of the rule.

Note You may also see function currentv in documentation for
oracle 10g release 1, but it does not appear in documentation for
later versions although it looks like it still works. Similarly model
keyword is interchangeable with spreadsheet keyword but the
latter is no longer documented.

Rule result[0] = value[10] + value[value[1]] means that the

measure value for a cell with dimension value 0 is a sum of measure value

for ID = 10 and ID = value[1], which is 3. Please note that the cell with

dimension value 0 did not exist in original recordset and was added during

the model clause evaluation. As will be shown later, this behavior may be

adjusted. value[value[1]] is an example of nested cell reference.

Chapter 7 Model

164

So we can consider measures as values of multidimensional arrays and

dimensions as indices to address the values; however, measure values also

can be used to access the cells.

If we uncomment the return updated rows in Listing 7-1, then the

result will contain only rows with applied rules – that is, with IDs 5, 10,

and 0. The default value is return for all rows. The rules keyword is

optional unless you want to specify iterations.

There are two notations to address cells – symbolic dimension

reference and positional dimension reference. In case of a symbolic

dimension reference, there must be a predicate containing the name of the

dimension; otherwise the dimension reference is positional – for example,

constant value, expression, or even a for loop. Differences between the

notations are important for the left side of the rule which identifies the

cells that are updated with the values from the right side of the rule.

The way how Oracle treats missing cells can be specified using

keywords update/upsert all/upsert. Update only updates existing

cells, upsert (default value) updates existing cells and creates missing cells

in case of a positional reference while upsert all also creates missing

cells for mixed references if the dimension values used in the symbolic

reference existed in the original recordset. Let’s see how it works for

specific example as shown in Listing 7-2.

Listing 7-2. Upsert all in action

with t(dim1, dim2, value) as

(

select 0, 0, 1 from dual

union all select 0, 1, 2 from dual

union all select 1, 0, 3 from dual

)

select * from t

model

Chapter 7 Model

165

dimension by (dim1, dim2)

measures (value, cast(null as number) result)

rules upsert all

(

 result[0, 0] = -1,

 result[dim1=1, dim2=0] = -3,

 result[-1, for dim2 in (select count(*) from dual)] = -4,

 result[-2, dim2=1] = -10,

 result[-3, dim2=-1] = -100,

 result[-4, -1] = -1000

)

order by dim1, dim2;

 DIM1 DIM2 VALUE RESULT

---------- ---------- ---------- ----------

 -4 -1 -1000

 -2 1 -10

 -1 1 -4

 0 0 1 -1

 0 1 2

 1 0 3 -3

There are 3 original rows and 3 created ones in the query output from

Listing 7-2. Cells with values -4 and -1000 have been added because the

positional notation was used for both dimensions. The cell with value -10

was added because the value for symbolic notation dim2=1 existed in the

original recordset even though the positional value for dim1 did not exist.

The measure with value -100 was not added because the value -1 used in

symbolic notation for dim2 did not exist. The measure value for cell [0, 1]

is unknown because no rule was specified for it. And finally, the result for

cells [0, 0] and [dim1=1, dim2=0] was calculated because they existed in

the original recordset.

Chapter 7 Model

166

If we specify upsert then measure -10 will be excluded from the result

set, and if we specify update then cells with the result values -4 and -1000

will also disappear.

Simply speaking, symbolic references are used when we aim to work

with existing data only while positional references can be used if there

may be a necessity to add new cells – for example, in case of forecasting or

interpolation. Mixed reference makes sense when some dimensions are

supposed to be fixed while another can be extended with new members.

If we want to reference all the members of the dimension then we

can use the keyword any for positional reference or the is any predicate

for symbolic reference. The behavior is the same in both cases – the rule

is applied to all the members of the dimension and new ones cannot be

created.

When the left side of the rule references multiple rows, the order may

be very important as demonstrated in Listing 7-3.

Listing 7-3. Specifying order on the left side of the rule

with t(id, value) as

(select rownum, rownum from dual connect by level <= 3)

select *

from t

model

dimension by (id)

measures (value, 100 r1, 100 r2)

(

 r1[any] order by id asc = nvl(r1[cv(id)-1], 0) + value[cv(id)],

 r2[id is any] order by id desc = nvl(r2[cv(id)-1], 0) +

value[cv(id)]

)

Chapter 7 Model

167

order by id;

 ID VALUE R1 R2

---------- ---------- ---------- ----------

 1 1 1 1

 2 2 3 102

 3 3 6 103

When we specify ascending order the result is a cumulative sum while

for descending order, the result is completely different. We got 102 and 103,

which are the sum of the measure value for current row and measure r2 for

the previous row, which was initialized as 100. There is no previous row for

the first row so the result is simply a measure value for that row.

It always makes sense to specify the order on the left side of the rule if

it’s applied for multiple rows because

• It improves performance;

• It adds clarity to the solution;

• It helps to avoid ORA-32637: Self cyclic rule in

sequential order MODEL.

Listing 7-4 shows an example of recursive measure. Oracle cannot

resolve this dependency but if we uncomment “order by id,” then the result

will be calculated successfully. Try to guess what the result is without

running the query.

Listing 7-4. Recursive measure

with t as

(select rownum id from dual connect by level <= 3)

select *

from t

model

dimension by (id)

Chapter 7 Model

168

measures (id result)

rules

(

 result[any] /*order by id*/ = sum(result)[any]

);

(select rownum id from dual connect by level <= 3)

 *

ERROR at line 2:

ORA-32637: Self cyclic rule in sequential order MODEL

By default, all the rules are evaluated in the order they are specified

in a query. This also can be explicitly specified using an optional keyword

sequential order. This behavior may be changed if we specify automatic

order so that dependencies among the cells are taken into account.

Listing 7-5. Model with automatic rule ordering

with t as

(select rownum id from dual connect by level <= 3)

select *

from t

model

dimension by (id)

measures (0 t1, 0 x, 0 t2)

rules automatic order

(

 t1[id] = x[cv(id)-1],

 x[id] = cv(id),

 t2[id] = x[cv(id)-1]

)

Chapter 7 Model

169

order by id;

 ID T1 X T2

---------- ---------- ---------- ----------

 1 1

 2 1 2 1

 3 2 3 2

If you omit automatic order in Listing 7-5, then values for t1 would be

NULL, 0, 0.

As it was already shown, you can specify multiple rules for the same

measure; moreover Oracle will not complain even if you specify multiple

rules for the same measure and the same cells; however this should be

avoided. For example, we can add fourth rule t1[id] = x[cv(id)] +

t2[cv(id)] into the query from Listing 7-5, but after that, rule t1[id] =

x[cv(id)-1] is completely overridden and should be removed.

Whatever order is specified, rules are calculated one by one. This

means the first rule is evaluated for all cells referenced on the left side and

then the second rule is evaluated for all cells referenced on its left side and

so on. In other words, rules are applied by columns and not by rows.

The keywords automatic/sequential order define a query plan.

For sequential order you’ll see SQL MODEL ORDERED in the plan, and in the

case of automatic order it can be SQL MODEL CYCLIC/SQL MODEL ACYCLIC

depending on whether cyclic dependencies exist or not.

In a simple case cyclic dependency may be in the scope of the same

measure (when one cell references another in the first rule and the other

way round in the second rule) or for different measures and the same

cell. Frankly speaking, I did not come across useful examples of models

with cyclic dependencies so I’d suggest that you always specify rules in

correct order and use default value sequential order; and in addition to

that, specify the order on the left-hand side of each rule that references

multiple cells.

Chapter 7 Model

170

In case of ORDERED/ACYCLIC models you also may see FAST in the plan

if all the rules use a single cell reference.

For example, for this rule

rules automatic order (x[1] = cv(id), x[-1] = cv(id))

there will be SQL MODEL ACYCLIC FAST in the plan while for this one

rules automatic order (x[for id in (1, -1)] = cv(id))

or this one

rules automatic order (x[id in (1, -1)] = cv(id))

it will be SQL MODEL ACYCLIC.

The logical difference between the second and third examples is that

the second one uses positional reference while the third one uses symbolic

reference, so if some cells are missing in the source recordset, then the

result will differ.

If we specify automatic order for the query from Listing 7-4, then

Oracle will throw an exception that the model does not converge.

Listing 7-6. Model with cyclic rule and automatic order

with t as

(select rownum id from dual connect by level <= 3)

select *

from t

model

dimension by (id)

measures (id result)

rules automatic order

(

 result[any] /*order by id*/ = sum(result)[any]

);

Chapter 7 Model

171

from t

 *

ERROR at line 4:

ORA-32634: automatic order MODEL evaluation does not converge

According to documentation, «Convergence is defined as the state in

which further executions of the model will not change values of any of the

cell in the model». Empirically we can figure out that, and at most three

(four) steps are used to check convergence.

Listing 7-7. Checking convergence

select * from (select 1 x from dual)

model dimension by (x) measures (0 as result, 64 tmp)

rules automatic order

(result[1]=ceil(tmp[1]/4), tmp[1]=result[1]);

 X RESULT TMP

---------- ---------- ----------

 1 1 1

select * from (select 1 x from dual)

model dimension by (x) measures (0 as result, 65 tmp)

rules automatic order

(result[1]=ceil(tmp[1]/4), tmp[1]=result[1]);

select * from (select 1 x from dual)

 *

ERROR at line 1:

ORA-32634: automatic order MODEL evaluation does not converge

In the first case values for (result, tmp) were 16, 4, 1, and 1 again –

model converged; in the second case values on the third and fourth steps

did not match, which led to an exception.

Chapter 7 Model

172

automatic order may change the plan operation from MODEL ORDERED

to MODEL ACYCLIC when there are no cyclic dependencies (refer, for

example, to Listing 7-5 to check that), but the desired result can be

achieved by just specifying rules in a proper order.

In all the examples so far (strictly speaking excluding acyclic model

example), model rules have been evaluated only once; however it’s

possible to evaluate rules iteratively until the termination condition

is satisfied. To demonstrate iterative computations let’s implement a

bisection method using the same interval and function as in Listing 6-5.

Listing 7-8. Implementation of bisection method using iterative model

with t as (select 0 id from dual)

select *

from t

model

dimension by (id)

measures ((1+2)/2 x, 1 x0, 2 x1)

rules iterate (1e2) until abs(x[0]-previous(x[0])) < 1e-2

 (

 x[iteration_number+1] = x[0],

 x0[iteration_number+1] = case when sign(y(x[0])) =

 sign(y(x0[iteration_number]))

 then x[0]

 else x0[iteration_number]

 end,

 x1[iteration_number+1] = case when sign(y(x[0])) =

 sign(y(x1[iteration_number]))

 then x[0]

 else x1[iteration_number]

 end,

 x[0] = (x0[iteration_number+1] + x1[iteration_number+1])/2

)

Chapter 7 Model

173

order by id;

 ID X X0 X1

---------- ---------- ---------- ----------

 0 1.4140625 1 2

 1 1.5 1 1.5

 2 1.25 1.25 1.5

 3 1.375 1.375 1.5

 4 1.4375 1.375 1.4375

 5 1.40625 1.40625 1.4375

 6 1.421875 1.40625 1.421875

7 rows selected.

Iteration_number is a function that returns an integer representing

the completed iteration through the model rules starting with 0. The

maximum possible iteration number in the above example is limited

with 100 (this can be specified only using a constant, not an expression);

however, there is termination condition abs(x[0]-previous(x[0])) <

1e-2 that means the absolute difference between root on current iteration

and on the previous iteration should be less than 0.01. So computation

stopped on the 6th step and the result is the same as the one calculated

using the subquery factoring clause - 1.4140625. The previous function is

used to refer the value on the previous iteration.

There is no way to figure out whether a model is iterative or not based

on a query plan. Query plan operations are the same as for non-iterative

models. Moreover, a stats column in the plan does not reflect the number

of iterations with enabled runtime execution statistics. A query plan for

Listing 7-8 will be the following.

Chapter 7 Model

174

select * from dbms_xplan.display_cursor(format => 'IOSTATS LAST');

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time |

| 0 | SELECT STATEMENT | | 1 | | 7 | 00:00:00.01 |

| 1 | SORT ORDER BY | | 1 | 1 | 7 | 00:00:00.01 |

| 2 | SQL MODEL ORDERED FAST | | 1 | 1 | 7 | 00:00:00.01 |

| 3 | FAST DUAL | | 1 | 1 | 1 | 00:00:00.01 |

In the model clause we can define reference model(s) that can be

used as “lookup arrays.”

Listing 7-9. Using reference models

with sales(year, currency, value) as

(select '2015', 'GBP', 100 from dual

union all select '2015', 'USD', 200 from dual

union all select '2015', 'EUR', 300 from dual

union all select '2016', 'GBP', 400 from dual

union all select '2016', 'EUR', 500 from dual)

, usd_rates(currency, rate) as

(select 'GBP', 1.45 from dual

union all select 'USD', 1 from dual

union all select 'EUR', 1.12 from dual)

select *

from sales

model

 reference usd_rates_model on (select * from usd_rates)

 dimension by (currency)

 measures (rate)

Chapter 7 Model

175

main sales_model

dimension by (year, currency)

measures (value, 0 usd_value)

(

 usd_value[any, any] order by year, currency =

 value[cv(year), cv(currency)] * usd_rates_model.

rate[cv(currency)]

)

order by 1, 2;

YEAR CUR VALUE USD_VALUE

---- --- ---------- ----------

2015 EUR 300 336

2015 GBP 100 145

2015 USD 200 200

2016 EUR 500 560

2016 GBP 400 580

As was stated at the beginning of this chapter, a combination of all

the dimensions uniquely identifies the cell in the cube, but this rule can

be relaxed if you specify unique single reference keyword. Query

from Listing 7-10 would throw an exception ORA-32638: Non unique

addressing in MODEL dimensions with the default value for addressing

which is unique dimension.

Listing 7-10. Model with unique single reference

with t(id, value) as

(select trunc(rownum/2), rownum from dual connect by level <= 3)

select *

from t

model

unique single reference

Chapter 7 Model

176

dimension by (id)

measures (value, 0 result)

(result[0] = 111)

order by id;

 ID VALUE RESULT

---------- ---------- ----------

 0 1 111

 1 2 0

 1 3 0

The last thing to mention regarding basic functionality is the

treatment of null values. There are two special functions for model clause

presentv/presentnnv that work similarly to nvl2. Presentv checks if

the value existed in the recordset prior to execution of the model clause

while presentnnv in addition to that also checks if the value was not null.

Listing 7-11 shows differences between presentv, presentnnv, and nvl2.

Listing 7-11. Comparing results for presentv, presentnnv, and nvl2

with t(id) as

(select cast('base' as varchar2(10)) from dual)

select *

from t

model

ignore nav

dimension by (id)

measures (cast(null as varchar2(10)) msr_base,

 cast(null as varchar2(10)) msr_calc,

 to_number(null) num)

(

 msr_base['calc'] = '1',

 msr_base['presentv'] = presentv(msr_base['base'], '+', '-'),

 msr_base['presentnnv'] = presentnnv(msr_base['base'], '+', '-'),

Chapter 7 Model

177

 msr_base['nvl2'] = nvl2(msr_base['base'], '+', '-'),

 msr_calc['presentv'] = presentv(msr_base['calc'], '+', '-'),

 msr_calc['presentnnv'] = presentnnv(msr_base['calc'], '+', '-'),

 msr_calc['nvl2'] = nvl2(msr_base['calc'], '+', '-'),

 num[any] = num[-1]

)

order by id;

ID MSR_BASE MSR_CALC NUM

---------- ---------- ---------- ----------

base 0

calc 1 0

nvl2 - + 0

presentnnv - - 0

presentv + - 0

Missing numeric measures are treated as zeros instead of nulls when

you specify ignore nav. All values for the num column would be nulls with

the default behavior - keep nav.

Analytic functions can be used in a model clause to implement

advanced logic. Listing 7-12 demonstrates a usage example.

Listing 7-12. Analytic functions in model clause

with t(value) as

(select column_value from table(sys.odcivarchar2list('A','B',

'C','D','E')))

select *

from t

model

ignore nav

dimension by (row_number() over (order by value) id)

measures (value, cast(null as varchar2(4000)) result, count(*)

over () num)

Chapter 7 Model

178

(

 result[mod(id, 2) = 1] = listagg(value, ', ') within group

(order by id) over (),

 num[mod(id, 2) = 1] = count(*) over (order by id desc)

)

order by id;

 ID VALUE RESULT NUM

---------- ---------- ---------- ----------

 1 A A, C, E 3

 2 B 5

 3 C A, C, E 2

 4 D 5

 5 E A, C, E 1

The same logic can be implemented using aggregate functions in the

following way:

 result[mod(id, 2) = 1] = listagg(value, ', ') within group

(order by null)[mod(id, 2) = 1],

 num[mod(id, 2) = 1] = count(*)[mod(id, 2) = 1 and id >= cv(id)]

The crucial difference between aggregate functions in a model clause

and an regular aggregate functions is that aggregate functions in model

clauses do not require grouping. Instead you need to specify the range of

cells for the aggregate function.

Aggregate functions allow flexible addressing of cells’ ranges unlike

analytic functions. But analytic functions accept both measures and

dimensions as arguments while an aggregate function can be applied

only to measures. Also it’s not possible to specify ordering on the left

side of the rule when an analytic function is used. Rule 1 and rule 3 from

Listing 7-13 demonstrate limitations of analytic and aggregate functions

correspondingly.

Chapter 7 Model

179

Listing 7-13. Limitation of analytic and aggregate functions in

model clause

select *

from (select rownum id from dual connect by rownum <= 3) t

model

dimension by (id)

measures (id value, 0 r1, 0 r2)

(

 -- 1)

 -- ORA-30483: window functions are not allowed here

 -- r1[any] order by id = sum(id) over (order by id desc)

 -- 2)

 r1[any] /*order by id*/ = sum(id) over (order by id desc),

 -- 3) ORA-00904: : invalid identifier

 -- r2[any] order by id desc = sum(id)[id >= cv(id)]

 -- 4)

 r2[any] = sum(value)[id >= cv(id)]

)

To explore flexibility of addressing for aggregate functions, let‘s get

back to the example regarding limitations of analytic functions shown in

Listing 3-6. The first limitation is not an issue at all. Listing 7-14 shows

how to calculate the number of points within the distance of 5 by two

coordinates.

Listing 7-14. Aggregate functions in model clause with conditional

addressing by multiple dimensions

with points as

 (select rownum id, rownum * rownum x, mod(rownum, 3) y

 from dual

 connect by rownum <= 6)

, t as

Chapter 7 Model

180

(select p.*,

 -- the number of points within the distance of 5 by x

coordinate

 -- cannot be solved with analytic functions for more

than one coordinate

 count(*) over(order by x range between 5 preceding and 5

following) cnt,

 -- sum of the distances to the point (3, 3) for all rows

 -- between unbounded preceding and current row ordered

by id

 -- cannot be solved using analytic function if required

to calculate

 -- distance between other rows and current row rather

than a constant point

 round(sum(sqrt((x - 3) * (x - 3) + (y - 3) * (y - 3)))

 over(order by id),

 2) dist

 from points p)

select *

from t

model

dimension by (x, y)

measures (id, cnt, dist, 0 cnt2)

rules

(

 cnt2[any, any] = count(*)[x between cv(x) - 5 and cv(x) + 5,

 y between cv(y) - 1 and cv(y) + 1]

)

order by id;

However, there is no straightforward solution for the second limitation

because it’s not possible to refer a measure for the current row in the

Chapter 7 Model

181

expression for an aggregate function. As a workaround we can use an

iterative model and do as many iterations as the number of rows to

maintain two auxiliary measures with coordinates for the current row. The

idea is shown in Listing 7-15, but this approach looks a bit awkward and

performance is inefficient.

Listing 7-15. Using iterative model as a workaround for limitation

of aggregate functions

with points as

 (select rownum id, rownum * rownum x, mod(rownum, 3) y

 from dual

 connect by rownum <= 6)

select *

from points

model

dimension by (id)

measures (id i, x, y, 0 x_cur, 0 y_cur, 0 dist2)

rules iterate (1e6) until i[iteration_number+2] is null

(

 x_cur[any] = x[iteration_number + 1],

 y_cur[any] = y[iteration_number + 1],

 dist2[iteration_number + 1] =

 round(sum(sqrt((x - x_cur) * (x - x_cur) +

 (y - y_cur) * (y - y_cur)))[id <= cv(id)], 2)

)

order by id;

As you see, auxiliary measures x_cur and y_cur have to be initialized

for all the rows on all the iterations. To populate (x_cur, y_cur) with

values (x, y) for the current row, we use [iteration_number + 1]

because row numbering starts with 1 while interation_number starts

with 0. Measure dist2 is calculated only for a single row on each iteration.

Chapter 7 Model

182

Given that sometimes aggregate and analytic functions are

interchangeable in a model clause, we will discuss this question a bit

further during performance analysis.

Let’s proceed to specific tasks. Listing 7-16 shows how to use the model

to generate recursive sequences discussed in previous chapters.

Listing 7-16. Generation of recursive sequences using model clause

select *

from dual

model

dimension by (0 id)

measures (1 result)

rules

(

 result[for id from 1 to 20 increment 1] =

 round(100 * sin(result[cv(id)-1] + cv(id) - 1))

);

select *

 from (select rownum lvl, rownum - 1 result

 from dual connect by level <= 2)

model

ignore nav

dimension by (lvl)

measures (result)

rules

(

 result[for lvl from 3 to 15 increment 1] =

 result[cv(lvl)-1] + result[cv(lvl)-2]

);

Chapter 7 Model

183

The model allows us to use values calculated on previous stages

likewise recursive subquery factoring. The crucial difference from a logical

perspective between the two is that a model applies rules and calculates

values (measures) by columns and not by rows, while recursive subquery

factoring evaluates all the expressions for a current row before processing

the next row. You can find additional details in the quiz “Baskets” in

Chapter 12.

Also, unlike recursive subquery factoring, a model provides an easy

way to reference measures from any other row; thus there is no need to

use an auxiliary column to generate Fibonacci, for example. Visibility for

recursive subquery factoring is limited to the recordset on the previous

iteration.

Even though recursive subquery factoring and a model can be used

to solve the same tasks, these capabilities are completely different and

designed for different purposes so using the same terminology is not quite

appropriate. Speaking about recursive subquery factoring, we can say

“referring value calculated on a previous level” or “referring calculated value

for parent record” while for the model clause, a more correct statement

would be “referring measure value for a previous dimension member.”

Recursive subquery factoring was designed to be able to apply the

same logic multiple times and to work with hierarchical data in particular,

while the model clause was designed for spreadsheet-like computations

and to work with multidimensional data.

Summarizing use cases, it makes sense to use the model in the

following situations:

 1. Spreadsheet-like calculations.

Simply speaking, this means calculating cells based on values for other

cells or their ranges.

Trivial expressions can often be rewritten to use other SQL capabilities:

analytic functions and/or additional joins.

Chapter 7 Model

184

For example, if we have information about monthly sales and want to

calculate a ratio to the first month, we can use the model

with t as

(select rownum id, 100 + rownum - 1 value from dual connect by

level <= 12)

select *

from t

model

dimension by (id)

measures (value, 0 ratio)

rules

(ratio[any] order by id = value[cv(id)]/value[1])

At the same time, it can be easily calculated using analytic functions

select id, value, value / first_value(value) over(order by id)

ratio from t

Here is a more synthetic example: calculate the ratio between the

current row value and the value from the row referenced by ref_id.

exec dbms_random.seed(100);

create table t as

select rownum id,

 100 + rownum - 1 value,

 trunc(dbms_random.value(1, 10 + 1)) ref_id

 from dual

connect by level <= 10;

Model solution is below:

select *

from t

model

Chapter 7 Model

185

dimension by (id)

measures (value, ref_id, 0 ratio)

rules

(

 ratio[any] order by id =

 round(value[cv(id)] / value[ref_id[cv(id)]], 3)

);

 ID VALUE REF_ID RATIO

---------- ---------- ---------- ----------

 1 100 6 .952

 2 101 7 .953

 3 102 7 .962

 4 103 8 .963

 5 104 3 1.02

 6 105 5 1.01

 7 106 10 .972

 8 107 4 1.039

 9 108 2 1.069

 10 109 7 1.028

The same can be achieved with self join (or analytic function using

approach from Listing 3-3):

select t1.*, round(t1.value / t2.value, 3) ratio

 from t t1

 join t t2

 on t1.ref_id = t2.id

 order by t1.id

However, sometimes more complex expressions might require

multiple joins and extensive usage of analytic and aggregate functions as

well as other SQL capabilities, while the same can be done using a model

clause and compact rules.

Chapter 7 Model

186

It’s worth mentioning that the model has some scalability issues so,

even if the solution is concise and simple, it always makes sense to test it

on real-data volumes and switch to alternative approaches including PL/

SQL if the model does not scale enough.

On the other hand, client applications for spreadsheet- like

calculations, like Excel, are not designed to work with large data volumes.

For example, the max number of rows for Excel 2016 is 1 million, which a

model can easily handle without notable performance degradation, not

to mention that the result can be calculated on the server side without

fetching data to the client.

 2. Calculating a complicated result that otherwise

cannot be achieved using pure SQL.

Sometimes Oracle accounts for reporting systems have only select

privileges so that you cannot create a table function and type for its

result. Of course, that can be created in another schema and granted to a

reporting system user, but the model reduces the number of cases when

it’s really necessary. Also the model may be a good solution to implement

complex logic for materialized views – even though model calculations can

be expensive this may be unnoticeable for end users.

Quite often people use a model clause when it’s not the best option:

• Generation of sequences where the current value may

be derived based on an initial value – for example, date

ranges. In this case generation would be faster with

connect by.

• Various char data treatment from splitting string into

tokens to calculating expression in a string. To split

strings you can use connect by; for more complex

manipulations it’s better to encapsulate logic in PL/SQL

or even C function.

Chapter 7 Model

187

• Finding specific sequences in a data – for example,

subsequences of integers without gaps. The better

instrument for this is pattern matching or analytic

functions.

• Calculation of totals and subtotals. Group by rollup/

grouping sets/cube designed for this purpose.

• Transposing. This is the job for pivot/unpivot operators.

• All other cases when you can avoid using it. ☺

 Brief Analysis of the Performance
The specific of the model clause is that a full recordset used for modeling

is getting loaded into memory. The number of result columns is fixed and

predefined (equals to partitions + dimensions + measures), but he number

of rows varies and may be more than or less than the number of rows in the

initial recordset as well as equal to it.

To analyze scalability, let’s measure performance of the different

approaches to generate a recursive sequence with sin function initially

introduced in the chapter about connect by (Chapter 5). The approaches

are PL/SQL function, recursive subquery factoring, and model. You can

find all the code in the corresponding chapters.

For a PL/SQL function, we will calculate the sum of all elements

for an increasing number of rows: 1e5, 2e5, 3e5, 4e5, 5e5, 1e6. The

performance of recursive and non-recursive implementation of function f

is approximately the same so you can use any of them for reproducing.

select sum(value(t)) result from table(f(1e5)) t;

Chapter 7 Model

188

Similarly, we will measure timings for recursive subquery factoring

and model approaches instead of the PL/SQL function.

Aggregate function was used to get a single row result and avoid

fetching; our primary goal is to generate a sequence though. To complete

the picture, let’s also consider an iterative model that does not generate a

sequence but calculates the sum of the elements.

select cumul

from dual

model

dimension by (0 id)

measures (1 result, 1 cumul)

rules iterate (1e5)

(

 result[0] = round(100 * sin(result[0] + iteration_number)),

 cumul[0] = cumul[0] + result[0]

);

For all the approaches, most of the time is spent on CPU and execution

statistics are shown in Table 7-1.

Table 7-1. Execution statistics for sequence generation

Number of rows PL/SQL Recursive with Model Iterative model

1e5 01.18 02.29 03.22 01.86

2e5 02.43 04.52 12.68 03.35

3e5 03.47 07.58 27.93 05.00

4e5 04.70 10.31 53.45 06.90

5e5 05.82 12.85 01:18.57 08.58

1e6 11.80 27.32 05:01.87 17.00

Chapter 7 Model

189

Also a lot of PGA memory is consumed during generation; on the other

hand, temporary tablespace was involved only for recursive with (this can

be avoided using manual memory management as will be shown later in

this section – so performance from recursive with may be a bit better).

Memory category (v$process_memory.category) for the model and

recursive subquery factoring is SQL and for PL/SQL function it’s PL/SQL,

which is quite expected. You can drill down and check v$sql_workarea.

operation_type, it will be SPREADSHEET for model clause and CONNECT-

BY (SORT) for recursive with.

v$active_session_history.pga_allocated and v$active_session_history.

temp_space_allocated are good sources to track memory usage growth in

dynamics. If more detailed analysis is required, then you may want to use

v$process_memory_detail performance view.

So as you see, the model demonstrated worse performance and

moreover nonlinear growth of elapsed time depending on the number of

rows. The iterative model looks much better, but strictly speaking it does

not solve the original task – to generate the sequence; it only calculates

the sum of elements. On the other hand, as a rule, the model is used on

top of existing data instead of generating new data, but anyway large data

volumes remain an issue.

Performance and scalability of recursive with for this task was much

better than for the model clause, but the model may be a better approach

for many other tasks. As it was mentioned earlier, recursive with adds a

new recordset on each iteration, but this is not necessary for a model so

if you need to iteratively apply a set of transformations to some recordset

then model may be a much better approach.

Query plans for a model clause to generate a recursive sequence were

trivial - SQL MODEL ORDERED FAST and SQL MODEL ORDERED for iterative and

non-iterative model respectively.

Listing 7-17 shows a query with a model clause that requires some

additional operations because of the analytic/aggregate function in it. Let’s

execute the query with an analytic function for 1e6 and 1.2e6 (20% more)

Chapter 7 Model

190

number of rows and do the same for the aggregate function. There is no need

for the model in this query at all, and it’s used purely for performance analysis.

Listing 7-17. Analytic/aggregate functions in model clause

select *

from

(select *

from (select rownum id from dual connect by rownum <= 1e6) t

model

dimension by (id)

measures (id value, 0 result)

(

 -- analytic version

 result[any] = sum(value) over (order by id desc)

 -- aggregate version

 -- result[any] = sum(value)[id >= cv(id)]

)

order by id

)

where rownum <= 3;

 ID VALUE RESULT

---------- ---------- ----------------

 1 1 500000500000

 2 2 500000499999

 3 3 500000499997

Execution time for 1e6 rows was 4 seconds in both cases – this is not

surprising because plans for aggregate and analytic functions are the same.

But elapsed time jumped to 8 seconds when we increased the number of

rows by 20%.

Chapter 7 Model

191

Listing 7-18. Execution time for model with analytic/aggregate

function

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | COUNT STOPKEY | |

| 2 | VIEW | |

| 3 | SORT ORDER BY STOPKEY | |

| 4 | SQL MODEL ORDERED | |

| 5 | VIEW | |

| 6 | COUNT | |

| 7 | CONNECT BY WITHOUT FILTERING| |

| 8 | FAST DUAL | |

| 9 | WINDOW (IN SQL MODEL) SORT | |

There was not enough memory for the query execution when

we increased the number of rows so Oracle started using temporary

tablespace – this is the reason for nonlinear elapsed time growth. You can

check that by running the query below for the corresponding SQL_ID.

select pga_allocated / (1024 * 1024) pga_mb,

 temp_space_allocated / (1024 * 1024) temp_mb,

 ash.*

 from v$active_session_history ash

 where sql_id = '<sql_id>'

 order by sample_time desc

Chapter 7 Model

192

Let’s switch to manual memory management and increase memory for

sorting to the max possible value – 2GB.

alter session set workarea_size_policy = manual;

alter session set sort_area_size = 2147483647;

Elapsed time after this change is 5 second, which means linear

dependency on the record count. It’s better to let Oracle manage memory

though and use manual memory management only for specific queries

and when there is a strong reason for it.

The last thing to mention is that execution time for 1.2e6 rows without

a model and with default memory settings is just 2 seconds. Let me

reiterate that you should avoid using a model clause when the required

result can be achieved without it.

select *

 from (select t.*, sum(id) over(order by id desc) result

 from (select rownum id from dual

 connect by rownum <= 1.2e6) t

 order by id)

 where rownum <= 3;

Summarizing observations regarding performance:

• Model clause causes intensive memory usage. There is

always “SPREADSHEET” work area operation, but for

core complex logic there may be “WINDOW (SORT)”

and others.

• Rule evaluation and operating on huge work areas may

require a lot of CPU resources.

• Of course, a query plan with runtime execution

statistics is an invaluable source of information –

it shows which operation was the most resource

consumptive as well as memory usage per operation.

Chapter 7 Model

193

• In some cases, the partitioned model and parallel

execution may dramatically improve the performance –

this will be investigated further in the next section.

 Model Parallel Execution
To analyze model parallel execution, let’s consider the following task: for

each partition we need to calculate a running sum that drops to zero when

reaches some predefined limit.

Listing 7-19 shows the model query to calculate running for limit 3e3

(3000).

Listing 7-19. Model clause for conditional running sum calculation

create table t (part int, id int, value int);

begin

 for i in 1 .. 80 loop

 dbms_random.seed(i);

 insert into t

 select i, rownum id, trunc(dbms_random.value(1, 1000 + 1))

value

 from dual

 connect by rownum <= 1e5;

 end loop;

 commit;

end;

/

select --+ parallel(2)

*

from t

model

partition by (part)

Chapter 7 Model

194

dimension by (id)

measures (value, 0 x, 0 sid)

rules

(

 x[any] order by id = case when cv(id)=1 then value[cv(id)]

 when x[cv(id)-1] > 3e3 then

value[cv(id)]

 else x[cv(id)-1] + value[cv(id)]

 end,

 sid[any] order by id = userenv('sid')

)

The same logic can be implemented using a parallel pipelined

function. A weak REF CURSOR parameter allows only partitioning by

ANY so we created a strong REF CURSOR to partition by the hash(part).

The column part also specified in order by clause because there is no

guarantee that there will be one partition per slave. Also the table function

requires an SQL collection type for result.

Listing 7-20. Pipelined function for parallel processing

create or replace type to_3int as object (part int, x int, sid int)

/

create or replace type tt_3int as table of to_3int

/

create or replace package pkg as

type refcur_t is ref cursor return t%rowtype;

end;

/

create or replace function f_running(p in pkg.refcur_t) return

tt_3int

 pipelined

 parallel_enable(partition p by hash(part)) order p by(part, id) is

Chapter 7 Model

195

 rec p%rowtype;

 prev p%rowtype;

 x int := 0;

begin

 loop

 fetch p

 into rec;

 exit when p%notfound;

 if rec.id = 1 then

 x := rec.value;

 elsif x > 3e3 then

 x := rec.value;

 else

 x := x + rec.value;

 end if;

 pipe row(to_3int(rec.part, x, userenv('sid')));

 prev := rec;

 end loop;

 return;

end;

/

Performance testing was done on a server with 80 CPU cores for

granular analysis of parallel execution impact on the performance. The

following query was executed with a different DOP (degree of parallelism)

to measure elapsed time for a PL/SQL approach.

select count(distinct sid) c, sum(x*part) s

 from table(f_running(cursor(select /*+ parallel(2) */ * from t)));

Similarly, an inline view with a model clause was used instead of a

table operator to test the model approach.

Chapter 7 Model

196

Table 7-2 represents execution statics for two approaches and a

ratio between elapsed times. As you see, the model clause is faster than

a PL/SQL approach even for serial execution; moreover it leverages

parallel execution more efficiently. For a DOP 20 model runs more than

3 times faster than a PL/SQL function. Increasing DOP to 40 negatively

impacts performance of a PL/SQL because overhead costs to manage

parallel execution stifle the benefit.

It’s important to note that a PL/SQL approach for sequence generation

was better, while for this task the model is faster. This is because we used

a collection of numbers in the first case but a collection of objects in the

second case. Oracle requires additional CPU resources to construct the

object for every single row. Also sequence generation required sin and

round functions, while only primitive operations were used in the logic for

the conditional running sum. The more complex the logic is, the less the

impact of constructing an object for each row.

Another key detail for parallel processing is partitioning. When we specify

partitioning for a model clause, then data for them becomes completely isolated

and rules are evaluated independently for each partition; but in case of a

pipelined function there is no guarantee that there will be a single partition

per slave so we need to keep that in mind when implementing the logic.

Table 7-2. Parallel execution statistics

DOP Actual DOP PL/SQL Model Ratio

Serial 1 01:47.37 53.34 2.01

4 4 36.59 15.83 2.31

10 10 19.78 08.72 2.27

20 19 16.22 05.24 3.1

40 34 18.72 04.35 4.3

Chapter 7 Model

197

The is one last detail to mention – actual DOP was the same for both

approaches, which is not surprising because DOP was specified in SQL

queries and eventually the SQL engine is responsible for splitting data

across slave sessions.

 Summary
Model clause is the most powerful Oracle SQL feature. Theoretically

iterative models allow us to implement an algorithm of any complexity

(see Chapter 10, “Turing Completeness”). On the other hand, the model

clause may cause excessive CPU and memory consumption, and it it’s not

linearly scalable for tasks where some other approaches, including PL/SQL,

demonstrate linear scalability depending on data volumes. However,

it’s possible to leverage parallel execution for partitioned models, which

makes SQL modeling a perfect instrument for some tasks.

It makes sense to use a model for spreadsheet-like computations,

allowing implementation of complicated rules while avoiding multiple

joins. Also a model may be the right tool for implementing complex logic

when it’s preferable to avoid using a procedural approach, especially if a

model is used in materialized views so the response time is not critical.

Chapter 7 Model

199© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_8

CHAPTER 8

Row Pattern Matching:
match_recognize
The ability to find and analyze the patterns in the data was widely desired

but not possible with SQL until Oracle 12c.

This is required in many business areas, for example, security

applications and fraud detection or financial applications and pricing

analysis. Native pattern-matching capabilities in SQL help to avoid

complex bespoke solutions on the client side or within the middle-tier

application server and use easy-to-share SQL queries instead.

This is the last one of Oracle’s specific SQL features, but before diving

into it, let’s briefly recall the evolution of SQL.

Basic SQL – the one that implements five main operations of relational

algebra – allows only row-level visibility.

Aggregate functions introduce group-level visibility, but a group is

defined by a specific expression that must be the same for all rows in the

group and each row belongs to exactly one group.

Analytic functions allow window-level visibility. The window definition

is the same for all rows; however the windowing_clause adds some

flexibility so that attributes of the current row may be specified as shift

values by range/rows.

200

Pattern matching is the next level of flexibility; to match a pattern

across a recordset it’s treated as a sequence of rows – the idea is similar to

regular expressions when an input string is considered as a sequence of

chars. Each row may belong to zero, one, or more matches.

Let’s reuse the table atm from Listing 3-4. We can get all the rows where

the amount equals to 5 using the query below.

select * from atm where amount = 5

The same can be achieved using match_recognize.

select *

from atm

match_recognize

(all rows per match

 pattern (five)

 define

 five as five.amount = 5

) mr

order by ts;

TS AMOUNT

--------- ----------

03-JUL-16 5

03-JUL-16 5

Obviously, pattern matching was not designed not for such kind of

tasks and, for example, if there was an index for the amount column,

Oracle would not use it (although the index can be used if you specify the

pattern matching and where clauses together). The query plan looks as

follows (FINITE AUTOMATON was trimmed in the output of dbms_xplan).

Chapter 8 row pattern MatChing: MatCh_reCognize

201

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | SORT ORDER BY | |

| 2 | VIEW | |

| 3 | MATCH RECOGNIZE BUFFER DETERMINISTIC FINITE AU| |

| 4 | TABLE ACCESS FULL | ATM |

Let’s proceed to an example that is a bit more complex.

alter session set NLS_DATE_FORMAT = 'mi';

Session altered.

select *

from atm

match_recognize

(order by ts

 measures

 strt.amount start_amount,

 final last(up.amount) end_amount,

 running count(*) as cnt,

 match_number() as match,

 classifier() as cls

 all rows per match

 after match skip past last row

 pattern (strt down* up*)

 define

 down as down.amount < prev(down.amount),

 up as up.amount > prev(up.amount)

) mr

order by ts;

Chapter 8 row pattern MatChing: MatCh_reCognize

202

TS START_AMOUNT END_AMOUNT CNT MATCH CLS AMOUNT

-- ------------ ---------- ---------- ---------- ---------- ----------

01 85 100 1 1 STRT 85

03 85 100 2 1 DOWN 15

05 85 100 3 1 UP 100

07 40 85 1 2 STRT 40

09 40 85 2 2 DOWN 30

11 40 85 3 2 UP 50

13 40 85 4 2 UP 85

15 60 100 1 3 STRT 60

17 60 100 2 3 DOWN 5

19 60 100 3 3 UP 100

21 25 80 1 4 STRT 25

23 25 80 2 4 UP 30

25 25 80 3 4 UP 80

27 5 35 1 5 STRT 5

29 5 35 2 5 UP 35

Here a pattern is defined as one row with label strt, zero, or more

rows with label down and zero or more rows with label up. Actually strt,

down, and up are called pattern variables. A row is marked as down when

an amount is less than in the previous row and correspondingly marked

as up when an amount is greater than in the previous row. If we visualize

the relation between an amount and ts, then each match will be V-shape or

just an ascending or descending part of it if the other one is missing.

all rows per match means every row that is matched is included in

the pattern-match output. If you specify one row per match instead, then

for every pattern match found, there will be one row in the resultset. In the

first case, the way output is generated is similar to analytic functions while

in the second case – it’s similar to the aggregate ones.

Chapter 8 row pattern MatChing: MatCh_reCognize

203

There are two specific built-in measures for pattern matching. match_

number numbers matches starting with one and assigns the same number

for all rows in a specific match. classifier shows which row mapped to

which pattern variable. All the measures except match_number function are

evaluated within the scope of a given match.

Note You can define a union of pattern variables using the subset
keyword to reference them in measures together. For example,
SUBSET STDN = (STRT, DOWN). these groupings also can be
referenced in the define clause to specify definitions of other pattern
variables. See Listing 8-3 for usage example.

Expression running count(*) was used for row numbering within the

matches. final count(*) can be used to show the total row count in the

match. Similarly, the expression final last(up.amount) means that for

all rows in the match we display the last (maximal) value mapped to the up

pattern variable.

after match skip past last row means that whenever a match is

completed, a new search is restarted from the row right after the last row

in the match. This behavior may be changed so that a new search starts

from some row at a completed match; thus rows may belong to more than

one match. New search cannot start from the same row as the previous

one; otherwise Oracle would throw an exception ORA-62517: Next match

starts at the same point the last match started. In the edge case, a

new search can start from the second row of the current match.

The same matched groups and classifiers can be easily calculated

using analytic functions as shown in Listing 8-1.

Chapter 8 row pattern MatChing: MatCh_reCognize

204

Listing 8-1. Implementing pattern matching logic using analytic

functions

select ts,

 amount,

 count(decode(cls, 'STRT', 1)) over(order by ts) match,

 cls

 from (select ts,

 amount,

 case

 when lag(cls) over(order by ts) = 'UP' and cls

<> 'UP' then

 'STRT'

 else

 cls

 end cls

 from (select atm.*,

 nvl(case

 when amount < lag(amount)

over(order by ts) then

 'DOWN'

 when amount > lag(amount)

over(order by ts) then

 'UP'

 end,

 'STRT') cls

 from atm))

 order by ts;

If we change a pattern so only complete V-shapes (with ascending and

descending branches) are matched - strt down+ up+, then some rows

will not be part of any matched pattern. If want to see them as part of the

Chapter 8 row pattern MatChing: MatCh_reCognize

205

result, then we can specify either alternative in the pattern: strt down+

up+|dummy+? or use an option with unmatched rows, that is, all rows

per match with unmatched rows.

select *

from atm

match_recognize

(order by ts

 measures

 strt.amount start_amount,

 final last(up.amount) end_amount,

 running count(*) as cnt,

 match_number() as match,

 classifier() as cls

 all rows per match

 after match skip past last row

 pattern (strt down+ up+|dummy+?)

 define

 down as down.amount < prev(down.amount),

 up as up.amount > prev(up.amount)

) mr

order by ts;

TS START_AMOUNT END_AMOUNT CNT MATCH CLS AMOUNT

-- ------------ ---------- ---------- ---------- ---------- --------

01 85 100 1 1 STRT 85

03 85 100 2 1 DOWN 15

05 85 100 3 1 UP 100

07 40 85 1 2 STRT 40

09 40 85 2 2 DOWN 30

11 40 85 3 2 UP 50

13 40 85 4 2 UP 85

15 60 100 1 3 STRT 60

Chapter 8 row pattern MatChing: MatCh_reCognize

206

17 60 100 2 3 DOWN 5

19 60 100 3 3 UP 100

21 1 4 DUMMY 25

23 1 5 DUMMY 30

25 80 35 1 6 STRT 80

27 80 35 2 6 DOWN 5

29 80 35 3 6 UP 35

I believe there is no need to say that this query can also be rewritten to

use analytic functions instead.

Listing 8-2 shows the query that marks Fibonacci numbers in a sequence.

Listing 8-2. Marking Fibonacci numbers using pattern matching

with t as (select rownum id from dual connect by rownum <= 55)

select * from t

match_recognize

(order by id

 all rows per match

 pattern ((fib|{-dummy-})+)

 define fib as (id = 1 or id = 2 or id = last(fib.id, 1) +

last(fib.id, 2)));

 ID

 1

 2

 3

 5

 8

 13

 21

 34

Chapter 8 row pattern MatChing: MatCh_reCognize

207

This query cannot be rewritten with an analytic function because when

we mark a row, we need to consider rows marked so far.

There are a few more interesting details to mention here. Functions

like last in the define clause work in the scope of a matched group. This

means that if we want to access two previous values for a matched variable,

then the whole sequence must be one match. To avoid interrupting the

match, we used an alternative in the pattern. Syntax {--} means that rows

marked with this label will not be part of the result even though they are

part of the match. Finally, a crucial point is that rows were pre-generated

and pattern matching just helped to mark the required rows. So pattern

matching cannot be used to generate data based on some rules unlike

model or recursive subquery factoring; however it can be used to fill data

gaps, for example.

Let’s say we have a table with intervals and the goal is to add missing ones.

For the data below, the missing intervals are (5, 6), (15, 19), and (26, 29).

with t(s, e) as (

select 1, 4 from dual

union all select 7, 8 from dual

union all select 9, 10 from dual

union all select 11, 14 from dual

union all select 20, 25 from dual

union all select 30, 40 from dual)

Listing 8-3 shows how missing intervals can be added using pattern

matching. The X pattern variable is used to mark consecutive intervals

in the match and Y marks the interval if there is a gap between it and the

previous one. We start searching for the next match from Y so intervals

with the preceding gaps appear in the result twice – marked as Y and as

STRT. For those marked as Y, we use them to calculate the start and end

for missing intervals, and the number of rows marked as Y equals to the

number of missing intervals. To correctly handle the last row we added a

fake interval (1e10, 1e10).

Chapter 8 row pattern MatChing: MatCh_reCognize

208

Listing 8-3. Filling data gaps using pattern matching

select mr.*

from (select * from t union all

 select 1e10, 1e10 from dual)

match_recognize

(order by s

 measures

 classifier() cls,

 decode(classifier(), 'Y', last(cont.e) + 1, s) strt,

 decode(classifier(), 'Y', s - 1, e) end

 all rows per match with unmatched rows

 after match skip to last y

 pattern (strt x* y)

 subset cont = (strt, x)

 define x as x.s = prev(x.e) + 1

) mr

where s <> 1e10

order by strt, end;

 S CLS STRT END E

---------- ----- ---------- ---------- ----------

 1 STRT 1 4 4

 7 Y 5 6 8

 7 STRT 7 8 8

 9 X 9 10 10

 11 X 11 14 14

 20 Y 15 19 25

 20 STRT 20 25 25

 30 Y 26 29 40

 30 STRT 30 40 40

9 rows selected.

Chapter 8 row pattern MatChing: MatCh_reCognize

209

It was already mentioned that in some cases the logic for pattern

matching can be re-implemented using analytic functions. Let’s now

compare the performance between two approaches based on a specific

task: find all consecutive combinations of 1, 2, and 3 for table that contains

digits from 0 to 9.

exec dbms_random.seed(1);

create table digit as

select rownum id, trunc(dbms_random.value(0, 9 + 1)) value

 from dual

connect by rownum <= 2e6;

Listing 8-4 shows a solution using pattern matching. Unlike all

previous examples, we specified one row per match to group three

matched rows for each match into one.

Listing 8-4. Finding combinations of elements (1, 2, 3) using

pattern matching

select decode(v_id, v1_id, 1, v2_id, 2, v3_id, 3) v1,

 decode(v_id + 1, v1_id, 1, v2_id, 2, v3_id, 3) v2,

 decode(v_id + 2, v1_id, 1, v2_id, 2, v3_id, 3) v3,

 count(*) cnt

 from digit

match_recognize

(order by id

 measures

 least(v1.id, v2.id, v3.id) v_id,

 (v1.id) v1_id,

 (v2.id) v2_id,

 (v3.id) v3_id

 one row per match

 after match skip to next row

Chapter 8 row pattern MatChing: MatCh_reCognize

210

 pattern (permute (v1, v2, v3))

 define

 v1 as v1.value = 1,

 v2 as v2.value = 2,

 v3 as v3.value = 3)

 group by decode(v_id, v1_id, 1, v2_id, 2, v3_id, 3),

 decode(v_id + 1, v1_id, 1, v2_id, 2, v3_id, 3),

 decode(v_id + 2, v1_id, 1, v2_id, 2, v3_id, 3)

 order by 1, 2, 3;

 V1 V2 V3 CNT

---------- ---------- ---------- ----------

 1 2 3 2066

 1 3 2 1945

 2 1 3 2027

 2 3 1 1971

 3 1 2 1962

 3 2 1 2015

Keywords after match skip to next row were specified in order

to catch all the combinations. For example, there are two overlapping

sequences 1, 3, 2 and 3, 2, 1 on the ID interval (709, 719) and the rows with

ID 715 and 716 are part of two different matches.

select * from digit where id between 709 and 719;

 ID VALUE

---------- ----------

 709 9

 710 3

 711 2

 712 4

 713 6

 714 1

Chapter 8 row pattern MatChing: MatCh_reCognize

211

 715 3

 716 2

 717 1

 718 5

 719 0

Keyword permute means that we consider all possible combinations of

v1, v2, v3. To define which permutation was matched we derive matching

IDs and use logic with decode. The number of rows after pattern matching

equals to the number of matched groups and the number of rows after

group by is not more than 6 – the number of permutations of 1, 2, and 3.

Listing 8-5 shows an approach using analytic functions. For each row

we derive two previous rows and check that all of them are unique and

members of the set (1, 2, 3).

Listing 8-5. Finding combinations of elements (1, 2, 3) using

analytic functions

select v1, v2, v3, count(*) cnt

 from (select row_number() over(order by id) rn,

 value v3,

 lag(value, 1) over(order by id) v2,

 lag(value, 2) over(order by id) v1

 from digit)

 where rn > 2

 and v1 in (1, 2, 3)

 and v2 in (1, 2, 3)

 and v3 in (1, 2, 3)

 and v1 <> v2

 and v1 <> v3

 and v2 <> v3

 group by v1, v2, v3

 order by 1, 2, 3;

Chapter 8 row pattern MatChing: MatCh_reCognize

212

By the way, similar logic can be used for pattern matching as well; in

such case we can avoid decode, permute, and grouping.

 pattern (v1 v2 v3)

 define

 v1 as v1.value = any (1, 2, 3),

 v2 as v2.value = any (1, 2, 3)

 and v2.value <> v1.value,

 v3 as v3.value = any (1, 2, 3)

 and v3.value <> v2.value

 and v3.value <> v1.value)

Listing 8-6 shows query plans with runtime execution statistics (starts

column always equals to 1 and is manually removed for formatting purposes)

Listing 8-6. Query plans for finding combinations of elements (1, 2, 3)

select * from table(dbms_xplan.display_cursor(format =>

'IOSTATS LAST'));

--
| Id | Operation | Name | E-Rows | A-Rows | A-Time | Buffers |

--
| 0 | SELECT STATEMENT | | | 6 | 00:00:04.85 | 3712 |

| 1 | SORT GROUP BY | | 10 | 6 | 00:00:04.85 | 3712 |

|* 2 | VIEW | | 2000K | 11986 | 00:00:04.85 | 3712 |

| 3 | WINDOW SORT | | 2000K | 2000K | 00:00:03.91 | 3712 |

| 4 | TABLE ACCESS FULL | DIGIT | 2000K | 2000K | 00:00:00.16 | 3712 |

--

Chapter 8 row pattern MatChing: MatCh_reCognize

213

| Id | Operation | Name | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | | 6 | 00:00:02.74 | 3712 |

| 1 | SORT GROUP BY | | 2000K | 6 | 00:00:02.74 | 3712 |

| 2 | VIEW | | 2000K | 11986 | 00:00:02.73 | 3712 |

| 3 | MATCH RECOGNIZE SORT | | 2000K | 11986 | 00:00:02.72 | 3712 |

| 4 | TABLE ACCESS FULL | DIGIT | 2000K | 2000K | 00:00:00.16 | 3712 |

As you see, time spent on pattern matching and aggregation in the

first query is less than elapsed time only for analytics in the second query.

Please also note that the Reads column is absent, which means that all

table blocks were in the buffer cache.

Speaking about performance, it’s worth it to mention that, similar to a

model clause, you can leverage the power parallel execution – especially

if data can be partitioned. In the section “Model Parallel Execution,” I

compared model vs. PL/SQL. Let’s complete the picture by adding a

pattern-matching solution.

select --+ parallel(10)

 *

from t

model

match_recognize

(

 partition by part

 order by id

 measures

 sum(value) x,

 userenv('sid') sid

Chapter 8 row pattern MatChing: MatCh_reCognize

214

 all rows per match

 pattern(x+)

 define

 x as sum(value) - value <= 3e3

) mr;

It runs about 3 times faster than the model approach with the same

degree of parallelism.

Pattern matching is based on state machines and the pattern itself

defines whether the state machine is

• Deterministic Finite Auto (DFA) - each of the transitions

is uniquely determined by its source state and event;

• Nondeterministic Finite Auto (NFA) - next state

depends not only on the current event, but also

possibly on an arbitrary number of subsequent events.

In the first case, an efficient algorithm is used and you will see MATCH

RECOGNIZE SORT DETERMINISTIC FINITE AUTOMATON in the plan while in the

second case, backtracking is required and the plan will contain an operation

MATCH RECOGNIZE SORT. There may be the keyword BUFFER instead of SORT if

a recordset is ordered as required before applying pattern matching.

Listing 8-7 contains a query that generates NFA, because of the

quantifier for pattern variable y. If y was matched 3 times but the test for

z fails, then the state machine walks back and tries to match z again – this

is exactly what is happening during recognition of the second group. If we

specify pattern (x y{3} z) instead, then DFA will be used but there will

be only one match.

Chapter 8 row pattern MatChing: MatCh_reCognize

215

Listing 8-7. Pattern matching with backtracking

with t as (select rownum id from dual connect by rownum <= 10)

select * from t

match_recognize

(order by id

 measures

 match_number() match,

 classifier() cls

 all rows per match with unmatched rows

 pattern (x y{2, 3} z)

 define

 z as x.id + z.id <= 15

) mr;

 ID MATCH CLS

---------- ---------- -----

 1 1 X

 2 1 Y

 3 1 Y

 4 1 Y

 5 1 Z

 6 2 X

 7 2 Y

 8 2 Y

 9 2 Z

 10

10 rows selected.

Chapter 8 row pattern MatChing: MatCh_reCognize

216

Nevertheless, even with all the power, pattern matching currently has

some limitations. In particular

• It’s possible to use only a limited subset of aggregate

functions in the define clause and measures clause.

For example, you cannot use listagg or UDAG. It causes

ORA-62512: This aggregate is not yet supported

in MATCH_RECOGNIZE clause. Additional details

regarding aggregate function in pattern matching can be

found in Chapter 12 in the quiz “Resemblance Group.”

• You can use subqueries in a define clause but they

cannot be correlated. Otherwise the query fails with

ORA-62510: Correlated subqueries are not

allowed in MATCH_RECOGNIZE clause. I believe the

reason is to not mix up execution of finite automata

and the SQL engine.

 Summary
Row pattern matching significantly extends capabilities of SQL for data

analysis. This feature allows us to perform complex analysis that otherwise

would require analytic and aggregate functions, joins, and subqueries. In

some cases match_recognize is the only way to get a result using SQL in

an efficient and scalable way. Even for cases when pattern matching can

be rewritten using analytic functions, it shows better performance. An

analogy could be drawn with pivot/unpivot operators that can be replaced

with cross join/group by, but new capability performs a bit better than

old- school methods.

Regular expression-like syntax allows defining patterns in a concise

way, which simplifies maintainability and improves readability. Eventually,

pattern matching is a considerable breakthrough in SQL capabilities and

definitely a useful feature.

Chapter 8 row pattern MatChing: MatCh_reCognize

217© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_9

CHAPTER 9

Logical Execution
Order of Query Clauses
Oracle allows the combining of various query clauses on the same layer

of a single query, from basic features like joins, filtering, and grouping to

advanced constructions like model clause or pattern matching. Sometimes

it’s not possible to achieve the result using single select ... from query

block so you may have to create additional inline views in the query – for

example, when you want to filter by the value of an analytic function.

However, even if you can implement the entire logic using a single query

block – it’s not always necessary, because Oracle can eliminate inline views

during the query transformations. Moreover, in some cases additional

inline views may help to improve the performance as it will be shown in

the end of the chapter.

This chapter covers the execution order of query clauses in a query

block from a logical point of view, which helps to implement complex logic

in a concise way.

Let’s assume we have one single select statement containing only one

select keyword – thus there are no subqueries or inline views. Basically

the execution order is following:

 1. from, join, where

 2. connect by

 3. group by

218

 4. having

 5. analytic functions

 6. select-list (distinct, scalar subqueries etc)

 7. order by

However this requires a number of clarifications.

 1. Specifics of the combination of join, where, and

connect by was covered in Chapter 5, “Hierarchical

queries: Connect by.”. In addition, as it was

demonstrated in the section “Pseudocolumn

Generation in Detail,” strictly speaking, it’s not

correct to say that predicates in the where clause

are executed either before or after connect by.

 2. Even though, logically post-join predicates are

supposed to be evaluated after pre-join predicates,

in fact they may be applied before if that leads to the

plan with a lower cost.

 3. Query transformations may affect the actual

execution order even for a single query block. For

example, distinct may be applied before join if

Distinct Placement transformation takes place –

technically Oracle creates additional inline view.

 4. An invaluable source of information about the

execution order for a specific query is, of course,

a query plan. It will show when predicates are

applied, when aggregate and analytic functions are

executed, and when various sorts are performed, if

any, and much more.

Chapter 9 LogiCaL exeCution order of Query CLauses

219

All the transformations and optimizations can take place only if

this does not change the result, but what is more important, the actual

execution order may change after CBO transformations – a simple case is

Distinct Placement transformation.

Sometimes developers write a code, making wrong assumptions about

execution order, which may be dangerous. Below are some caveats.

 1. You should not build the logic with an assumption

that some filters will be applied before others in

the same query block or rely on a specific plan. The

example below demonstrates how a query may fail if

the query plan changes.

create table t01(id, value, constraint pk_t01 primary

key(id)) as

select 1, '1' from dual union all

select 2, '2' from dual union all

select 0, 'X' from dual;

create table t02(id, value) as

select 1, 1 from dual union all

select 2, 2 from dual;

select

* from t01 join t02 using (id, value);

select *

 from table(dbms_xplan.display_cursor(format =>

'basic predicate'));

select --+ no_index(t01)

* from t01 join t02 using (id, value);

select *

 from table(dbms_xplan.display_cursor(format =>

'basic predicate'));

Chapter 9 LogiCaL exeCution order of Query CLauses

220

In the first case, Oracle does nested loops with an

access by ID and applies a filter by value on top of

a joined recordset, while in the second case there

is a hash join and the query fails with ORA-01722:

invalid number because of an implicit conversion

when it tries to convert X into a number.

select

* from t01 join t02 using (id, value);

 ID VALUE

---------- ----------

 1 1

 2 2

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOPS | |

| 2 | NESTED LOOPS | |

| 3 | TABLE ACCESS FULL | T02 |

|* 4 | INDEX UNIQUE SCAN | PK_T01 |

|* 5 | TABLE ACCESS BY INDEX ROWID| T01 |

Predicate Information (identified by operation id):

 4 - access("T01"."ID"="T02"."ID")

 5 - filter("T02"."VALUE"=TO_NUMBER("T01"."VALUE"))

select --+ no_index(t01)

* from t01 join t02 using (id, value);

ERROR:

Chapter 9 LogiCaL exeCution order of Query CLauses

221

ORA-01722: invalid number

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

|* 1 | HASH JOIN | |

| 2 | TABLE ACCESS FULL| T02 |

| 3 | TABLE ACCESS FULL| T01 |

Predicate Information (identified by operation id):

 1 - access("T02"."VALUE"=TO_NUMBER("T01"."VALUE") AND

 "T01"."ID"="T02"."ID")

 2. You should not rely on the order of evaluation of

predicates in compound conditions. For example,

in both queries below, predicates were applied in

the same order as they were specified so that the

first query failed and the second one is executed

successfully. Given that id < 3 is false for the third

row, Oracle did not evaluate the second condition.

select id, case when 1 / (id - 3) < 0 and id < 3 then 1 end x

 from (select rownum id from dual connect by level <= 3);

ERROR:

ORA-01476: divisor is equal to zero

select id, case when id < 3 and 1 / (id - 3) < 0 then 1 end x

 from (select rownum id from dual connect by level <= 3);

Chapter 9 LogiCaL exeCution order of Query CLauses

222

 ID X

---------- ----------

 1 1

 2 1

 3

The key point is that there is no guarantee for such

evaluation. For example, both queries below fail,

irrespective of how the predicates are specified.

create table t03 as

select 'A' id from dual union all select '123' from dual;

Table created.

select * from t03

 where id >= 100 and regexp_like(id, '\d+');

 where id >= 100 and regexp_like(id, '\d+')

 *

ERROR at line 2:

ORA-01722: invalid number

select * from t03

 where regexp_like(id, '\d+') and id >= 100;

 where regexp_like(id, '\d+') and id >= 100

 *

ERROR at line 2:

ORA-01722: invalid number

To make sure that some predicates are evaluated

before others, we can use case expressions.

Chapter 9 LogiCaL exeCution order of Query CLauses

223

select * from t03

 where case when regexp_like(id, '\d+') then id end >= 100;

ID

123

 3. There is no guarantee how many times a scalar

subquery or deterministic function will be executed.

Of course, you may want to use various optimization

techniques like scalar subquery caching or reduce

the number of executions for a specific function by

making it deterministic, but you should not ever rely

that there will be a specific number of executions, in

particular a single execution.

Let’s get back to the execution order of query clauses and have a look

at mix of connect by with analytic and aggregate functions.

select

 id,

 count(*) cnt,

 max(level) max_lvl,

 max(rownum) max_rn,

 sum(id + count(*)) over(order by id) summ

 from (select column_value id from table(numbers(0, 0, 1)))

 group by id

 start with id = 0

connect by prior id + 1 = id;

 ID CNT MAX_LVL MAX_RN SUMM

---------- ---------- ---------- ---------- ----------

 0 2 1 3 2

 1 2 2 4 5

Chapter 9 LogiCaL exeCution order of Query CLauses

224

Initially Oracle built a tree 0, 1, 0, 1 (four rows, two levels) and

generated values for rownum and level pseudocolumns. After that,

the recordset has been grouped, and finally the analytic function was

calculated.

As stated in the list regarding execution order, analytic functions are

executed after group by but before distinct. So using an analytic function

with distinct in a select list is one of the examples when distinct cannot

be replaced with group by without additional inline views.

Let’s create a table and demonstrate a few more examples when group

by cannot be used instead of distinct.

create table tt as

select rownum id, mod(rownum, 2) value

 from dual connect by level <= 3;

These two queries are logically identical and produce the same output:

select distinct value from tt

select value from tt group by value

However, in the following cases, group by cannot be used without an

additional inline view, because expressions in the select list are evaluated

after group by.

select distinct row_number() over(partition by id order by

null) rn, value

 from tt;

 RN VALUE

---------- ----------

 1 0

 1 1

select distinct (select count(*) from tt) cnt, value from tt;

Chapter 9 LogiCaL exeCution order of Query CLauses

225

 CNT VALUE

---------- ----------

 3 1

 3 0

select distinct sys_connect_by_path(value, '->') path, value

 from tt

connect by 1 = 0;

PATH VALUE

---------- ----------

->1 1

->0 0

To check the behavior of distinct and filter by rownum, let’s create

another table:

create table tt1 as

(select trunc(rownum / 2) id from dual connect by level <= 5);

select * from tt1;

 ID

 0

 1

 1

 2

 2

Even though the filtering condition was specified to return three rows,

the following query returns only two rows because three rows returned

after a filter is applied and only two of them are unique. Inline view was

used in the from clause to guarantee an order.

Chapter 9 LogiCaL exeCution order of Query CLauses

226

select distinct id

 from (select * from tt1 order by id)

 where rownum <= 3;

 ID

 0

 1

The same can be done using group by without additional inline views

because all expressions for grouping as well as filter conditions can be

evaluated before group by.

select id

 from (select * from tt1 order by id)

 where rownum <= 3

 group by id;

Let’s analyze in more detail a situation when aggregate and analytic

functions are mixed together in the same query block. First query from

Listing 9-1 returns two rows as in the original table, but the second one

returns only a single row because the entire recordset was aggregated

before analytics.

Listing 9-1. Mixing aggregate and analytic functions

select count(*) over() cnt1

 from (select column_value id from table(numbers(1, 1)));

 CNT1

 2

 2

Chapter 9 LogiCaL exeCution order of Query CLauses

227

select count(*) over() cnt1, count(*) cnt2

 from (select column_value id from table(numbers(1, 1)));

 CNT1 CNT2

---------- ----------

 1 2

Aggregate and analytic functions can be nested. To understand the

result of Listing 9-2, keep in mind that aggregate functions are evaluated

first and analytics are applied after that.

Listing 9-2. Nesting aggregate and analytic functions

select value,

 count(*) agg,

 count(*) over() an,

 sum(count(*)) over(order by value) agg_an

 from tt

 group by value;

 VALUE AGG AN AGG_AN

---------- ---------- ---------- ----------

 0 1 2 1

 1 2 2 3

Some developers try to avoid inline views with no particular reason;

however in other cases it makes a difference from a performance point of

view. Listing 9-3 shows a query from Listing 9-2 rewritten with an inline

view and a bit simplified query (without analytic count) along with their

versions after transformations and plans.

Chapter 9 LogiCaL exeCution order of Query CLauses

228

Listing 9-3. Inline view instead of nested aggregate and analytic

functions

select t.*, sum(agg) over(order by value) agg_an

 from (select value, count(*) agg, count(*) over() an

 from tt

 group by value) t;

select "T"."VALUE" "VALUE",

 "T"."AGG" "AGG",

 "T"."AN" "AN",

 sum("T"."AGG") over(order by "T"."VALUE"

 range between unbounded preceding and current row) "AGG_AN"

 from (select "TT"."VALUE" "VALUE",

 count(*) "AGG",

 count(*) over() "AN"

 from "TT" "TT"

 group by "TT"."VALUE") "T";

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | WINDOW SORT | |

| 2 | VIEW | |

| 3 | WINDOW BUFFER | |

| 4 | HASH GROUP BY | |

| 5 | TABLE ACCESS FULL| TT |

select t.*, sum(agg) over(order by value) agg_an

 from (select value, count(*) agg

 from tt

 group by value) t;

Chapter 9 LogiCaL exeCution order of Query CLauses

229

select "TT"."VALUE" "VALUE",

 count(*) "AGG",

 sum(count(*)) over(order by "TT"."VALUE"

 range between unbounded preceding and current row) "AGG_AN"

 from "TT" "TT"

 group by "TT"."VALUE";

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | WINDOW BUFFER | |

| 2 | SORT GROUP BY | |

| 3 | TABLE ACCESS FULL| TT |

As you see, Oracle did not manage to eliminate an inline view for the

first query, but what is more important – plans differ. The plan for the

second query is the same as the plan for the original query with nested

functions; however column “an” is not calculated. On the other hand, the

first query returns the identical result as the original one, but as we see

from the plan there are two WINDOW operations and a top-level function

requires its own sort. This means that in this case you may want to use

nested functions for performance reasons. Technically, a complex view

merging transformation was applied for the second query but could not be

applied for the first one.

Aggregate functions also can be nested. As you may remember it’s

not possible to use a distinct keyword in listagg function, but if result is

supposed to be a single row, then nested aggregates can help to remove

duplicates from concatenation as shown in Listing 9-4.

Chapter 9 LogiCaL exeCution order of Query CLauses

230

Listing 9-4. Nested aggregate functions

select listagg(id, ',') within group(order by id) list

 from (select column_value id, rownum rn

 from table(numbers(1, 2, 3, 5, 2)));

LIST

1,2,2,3,5

select listagg(max(id), ',') within group(order by max(id)) list

 from (select column_value id, rownum rn

 from table(numbers (1, 2, 3, 5, 2)))

group by id;

LIST

1,2,3,5

To perform aggregation by id before concatenation it's enough to

specify aggregate function max just in one place.

listagg(id, ',') within group(order by max(id)) list

listagg(max(id), ',') within group(order by id) list

When aggregate functions are nested, then the result is always a single

row and only one level deep nesting makes sense and is allowed.

This capability may be quite useful if we want to concatenate unique

values in a correlated scalar subquery. Listing 9-5 demonstrates a couple

of approaches but the second one works only in 12c while on 11g it fails

with ORA-00904: "T1"."ID": invalid identifier because correlation

names scoped only to one level deep.

Chapter 9 LogiCaL exeCution order of Query CLauses

231

Listing 9-5. Concatenating unique values in correlated scalar subquery

select t1.*,

 (select listagg(max(t2.name), ', ') within group(order

by t2.name)

 from t2

 where t1.id = t2.id

 group by t2.name) x1,

 (select listagg(t2.name, ', ') within group(order by t2.name)

 from (select distinct name from t2 where t1.id =

t2.id) t2) x2

 from t1;

As was mentioned in the beginning of the chapter, sometimes an inline

view may be mandatory, for example, if you want to use the result of the

analytic function in a where clause. In other cases it may be optional as

was shown in a query with mixed analytic and aggregate functions. In such

situations it’s up to you to decide whether to use an inline view and make

a query easier to read or get rid of it to make it more concise and avoid

unnecessary layers.

It’s not possible to figure out in a general case whether a query

contains (mergeable) inline views or not based on the plan. As was

demonstrated, getting rid of an inline view can change the plan and have a

positive impact on the performance; however additional inline views also

may lead to improved performance.

Let’s create a function with an execution time close to one second to

demonstrate such a case.

create or replace function f return number is

begin

 dbms_lock.sleep(1);

 return 1;

end f;

/

Chapter 9 LogiCaL exeCution order of Query CLauses

232

The first query from Listing 9-6 takes 6 seconds because functions are

evaluated twice for each row. The second query takes 2 seconds because of

scalar subquery caching – the function is evaluated twice for the first row

and the result is cached. Finally, the third query takes only a second because

we can reuse the cached scalar from the inline view in both expressions.

Listing 9-6. Improving performance with inline views and scalar

subquery caching

select id, value, f + 1 f1, f - 1 f2 from tt t;

 ID VALUE F1 F2

---------- ---------- ---------- ----------

 1 1 2 0

 2 0 2 0

 3 1 2 0

Elapsed: 00:00:06.04

select id, value, (select f from dual) + 1 f1, (select f from

dual) - 1 f2

 from tt t;

 ID VALUE F1 F2

---------- ---------- ---------- ----------

 1 1 2 0

 2 0 2 0

 3 1 2 0

Elapsed: 00:00:02.02

select id, value, ff + 1 f1, ff - 1 f2

 from (select tt.*, (select f from dual) ff from tt) t;

Chapter 9 LogiCaL exeCution order of Query CLauses

233

 ID VALUE F1 F2

---------- ---------- ---------- ----------

 1 1 2 0

 2 0 2 0

 3 1 2 0

Elapsed: 00:00:01.02

Even specific Oracle clauses like pattern matching or model may be

combined in the same query block.

select * from dual

match_recognize (all rows per match pattern (x) define x as 1 = 1)

model dimension by (1 id) measures (0 result) rules ();

In this case match_recognize will be applied first and the model will

be executed on top of it; furthermore each clause is isolated to another so

if you want to treat a recordset in a specific way before applying the logic,

you may have to specify partitioning and ordering for each clause.

 Summary
Some details regarding logical execution of query clauses, along with

the examples, have been examined. When logic is quite complicated it

makes sense to use multiple query blocks even if that is not necessary - for

maintainability purposes. However you have to make sure that inline views

are merged as expected so there is no negative impact on the performance.

It’s not always possible to avoid inline views – for example, when filtering

by result of an analytic function is required. Moreover, in some cases

inline views may improve the performance as was demonstrated in the

end of the chapter. Also inline views may be useful as workarounds for

bugs (for example, there were a lot of bugs on old versions when connect

by and analytic functions have been mixed in the same query block) and

to control transformations – you can disable view merging and control

transformations in each subqeury separately.

Chapter 9 LogiCaL exeCution order of Query CLauses

235© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_10

CHAPTER 10

Turing Completeness
Turing completeness is a very important notion in computer science

because being Turing complete means that your model of computations

can execute any algorithm no matter how complex it’s, what data

structures are used, and how much storage or time would be needed to

evaluate it. SQL can be considered as yet another example of a model of

computations and even though it’s not supposed to be used to implement

any algorithm or business logic, it’s interesting to analyze whether it’s

Turing complete or not for the sake of completeness. Moreover, as will

be shown in the next chapter “When PL/SQL Is Better Than Vanilla

SQL,” sometimes pure SQL is not the best way to get the result even if an

algorithm can be easily implemented using it.

In computation theory, a system of data-manipulation rules (or model

of computations) is said to be Turing complete if it can be used to simulate

any Turing machine. The examples of such systems are the following:

processor’s instruction set, a programming language, a cellular automaton,

or even an ultimate reduced instruction set computer (URISC). On the

other hand, some widely known models of computations are not Turing

complete – for instance, deterministic finite automaton (DFA).

According to the Church–Turing thesis, “All physically computable

functions are Turing-computable,” or in other words, if some model of

computations can simulate a Turing machine then it can implement any

computable function.

236

One of the easiest ways to prove whether language is Turing complete

is to implement an elementary cellular automaton called Rule 110, which

is Turing complete – proof can be found in note [7] in the Appendix.

In an elementary cellular automaton, a one-dimensional pattern of 0s

and 1s evolves according to a simple set of rules. Whether a point in the

pattern will be 0 or 1 in the new generation depends on its current value,

as well as on those of its two neighbors as described in Table 10-1. The left

neighbor for the first symbol is the last symbol in the tape and the right

neighbor for the last symbol is the first symbol.

Table 10-1. The set of rules for Rule 110 automaton

Current pattern 111 110 101 100 011 010 001 000

New start for the center cell 0 1 1 0 1 1 1 0

Rule 110 is called like that because if a binary sequence for new states

01101110 interpreted as a binary number corresponds to the decimal

value 110.

Listing 10-1 shows the example of an evaluation for the first 19 steps of

Rule 110 for the initial tape 000000000010000000000000010000.

Listing 10-1. Example of evaluation for Rule 110

 PART STR

---------- --

 1 000000000010000000000000010000

 2 000000000110000000000000110000

 3 000000001110000000000001110000

 4 000000011010000000000011010000

 5 000000111110000000000111110000

 6 000001100010000000001100010000

Chapter 10 turiNg CompleteNess

237

 7 000011100110000000011100110000

 8 000110101110000000110101110000

 9 001111111010000001111111010000

 10 011000001110000011000001110000

 11 111000011010000111000011010000

 12 101000111110001101000111110001

 13 111001100010011111001100010011

 14 001011100110110001011100110110

 15 011110101111110011110101111110

 16 110011111000010110011111000010

 17 110110001000111110110001000111

 18 011110011001100011110011001100

 19 110010111011100110010111011100

 20 110111101110101110111101110101

Listing 10-2 shows how Rule 110 can be implemented using recursive

subquery factoring and analytic functions. In a nutshell, the tape is

transformed into a recordset where one row is one symbol and analytic

functions are used to derive neighbors for each value, after symbols for the

required steps are generated, they getting concatenated into strings.

Listing 10-2. Implementation of Rule 110 using recursive subquery

factoring

with t0 as

 (select '000000000010000000000000010000' str from dual),

t1 as

 (select 1 part, rownum rn, substr(str, rownum, 1) x

 from t0

 connect by substr(str, rownum, 1) is not null),

t2(part, rn, x) as

 (select part, rn, cast(x as char(1))

 from t1

Chapter 10 turiNg CompleteNess

238

 union all

 select part + 1,

 rn,

 case nvl(lag(x) over(order by rn),

 last_value(x) over(order by rn rows

 between current row and unbounded following))

 || x ||

 nvl(lead(x) over(order by rn),

 first_value(x) over(order by rn rows

 between unbounded preceding and current row))

 when '111' then '0'

 when '110' then '1'

 when '101' then '1'

 when '100' then '0'

 when '011' then '1'

 when '010' then '1'

 when '001' then '1'

 else '0'

 end

 from t2

 where part < 20)

select part, listagg(x) within group(order by rn) str

 from t2

 group by part

 order by 1;

Without analytic functions it’s not possible to derive values for

neighbors because a recursive query name must be referenced only once

in a recursive branch, so self joins of subqueries with a recursive query

name are not allowed. Therefore I do not think that SQL is Turing complete

without support of analytic functions in a recursive branch; however this

has to be proven.

Chapter 10 turiNg CompleteNess

239

After it’s proven that cellular automaton can be used to implement any

algorithm, one may ask “how to actually use it for that? For example, to

implement a very simple routine that sums up two numbers.” In order to

do that, pattern of 0s and 1s must be treated as data and code so the tape

has to be constructed in a specific manner. In other words, the algorithm

has to be coded in input tape – not in SQL.

The last thing to mention about Rule 110 is that it can be implemented

relatively simply for a tape of arbitrary length using a model clause even

without iterations. Such imitations using SQL are quite slow and can be

used only for academic purposes though.

A model clause has yet another interesting feature from an academic

point of view – it can be used to implement any algorithm if you get rid of

nested loops, which is theoretically always possible. To demonstrate this

let’s have a look at a bubble sort algorithm shown in Listing 10-3.

Listing 10-3. Bubble sort for string of symbols

declare

 s varchar2(4000) := 'abcd c*de 01';

 n number := length(s);

 j number := 1;

 k number := 1;

 x number := 1;

 i number := 1;

begin

 while x > 0 loop

 x := 0;

 for j in 1 .. n - k loop

 i := i + 1;

 if substr(s, j + 1, 1) < substr(s, j, 1) then

 s := substr(s, 1, j - 1) || substr(s, j + 1, 1) ||

 substr(s, j, 1) || substr(s, j + 2);

Chapter 10 turiNg CompleteNess

240

 x := 1;

 end if;

 end loop;

 k := k + 1;

 end loop;

 dbms_output.put_line(i || s);

end;

We repeat nested loops until there is at least one swap on the current

iteration of the while loop, which is flagged in an x variable.

After conversion to a single while loop in Listing 10-4, we introduced

an additional flag – c. This flag is an analogue to x from Listing 10-3 while

x itself always equals to 1 and may reset to zero only when an “inner loop”

is completed so algorithms can terminate only if we processed all the

symbols on the current step and there were no swaps (i.e., c = 0).

Listing 10-4. Bubble sort using single while loop

declare

 s varchar2(4000) := 'abcd c*de 01';

 n number := length(s);

 j number := 1;

 k number := 1;

 x number := 1;

 i number := 1;

 c number := 0;

begin

 while x > 0 loop

 i := i + 1;

 c := case when substr(s, j + 1, 1) < substr(s, j, 1)

 then 1

 else case when j = 1 then 0 else c end

 end;

Chapter 10 turiNg CompleteNess

241

 s := case when substr(s, j + 1, 1) < substr(s, j, 1)

 then substr(s, 1, j - 1) || substr(s, j + 1, 1) ||

 substr(s, j, 1) || substr(s, j + 2)

 else s

 end;

 x := case when j = n - k and c = 0 then 0 else 1 end;

 k := case when j = n - k then k + 1 else k end;

 j := case when j - 1 = n - k then 1 else j + 1 end;

 end loop;

 dbms_output.put_line(i || s);

end;

To implement this logic using a model clause we have to

• Declare necessary variables (columns);

• Replace assignment operators “:=” with equality signs “=”;

• Replace semicolon, which separates statements with a

comma, to separate rules in the model;

• Add [0] for addressing – logic is applied to a single

string that is identified with rn = 0.

Listing 10-5 shows an SQL approach. In all three cases the result is the

same and 64 iterations have been performed to get it.

Listing 10-5. Bubble sort using model clause

with t as (select 'abcd c*de 01' s from dual)

select i, s

from t

model

dimension by (0 rn)

measures (length(s) n, 1 j, 1 k, 1 x, 1 i, 0 c, s)

rules iterate(60) until x[0]=0

Chapter 10 turiNg CompleteNess

242

(

 i[0] = i[0] + 1,

 c[0] = case when substr(s[0], j[0] + 1, 1) < substr(s[0], j[0], 1)

 then 1

 else case when j[0] = 1 then 0 else c[0] end

 end,

 s[0] = case when substr(s[0], j[0] + 1, 1) < substr(s[0], j[0], 1)

 then substr(s[0], 1, j[0] - 1) || substr(s[0],

j[0] + 1, 1) ||

 substr(s[0], j[0], 1) || substr(s[0], j[0] + 2)

 else s[0]

 end,

 x[0] = case when j[0] = n[0] - k[0] and c[0] = 0 then 0 else 1 end,

 k[0] = case when j[0] = n[0] - k[0] then k[0] + 1 else k[0] end,

 j[0] = case when j[0] - 1 = n[0] - k[0] then 1 else j[0] + 1 end

);

 I S

---------- ------------

 64 *01abccdde

 Summary
It has been shown that recursive subquery factoring makes SQL Turing

complete. Moreover it was demonstrated how an iterative model can be

used to implement an arbitrary algorithm. Nevertheless with all the power,

SQL is not a language for iterative computations. Also as was shown in

the subsection “Brief Analysis of the Performance” in Chapter 7 about

the model clause, even for trivial algorithms PL/SQL may be faster than

recursive subquery factoring or model clauses. Additional details when

PL/SQL is a more preferable approach than SQL can be found in the next

chapter – “When PL/SQL Is Better Than Vanilla SQL.”

Chapter 10 turiNg CompleteNess

PART II

PL/SQL and
SQL solutions
The list of tasks and demonstrated solutions in Chapter 12 correspond to

the following Oracle features:

Quiz CB AF RW M PM PL

1 Converting into decimal + +

2 Connected components + +

3 Ordering dependencies + +

4 Percentile with shift +

5 N consequent 1s + + +

6 Next value + + +

7 Next branch + + +

8 Random subset + + +

9 Covering ranges + + +

10 Zeckendorf representation + + + +

11 Top paths + +

12 Resemblance group + +

13 Baskets + +

14 Longest increasing subsequence + +

15 Quine

244

Legend
AF: analytic functions

CB: connect by

RW: recursive with

M: model

PM: pattern matching

PL: PL/SQL

PaRT II PL/SQL aNd SQL SOLuTIONS

245© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_11

CHAPTER 11

When PL/SQL Is Better
Than Vanilla SQL
It was already mentioned a few times that for many tasks, instead of

using advanced Oracle features like a model clause or recursive subquery

factoring, you can implement the logic in PL/SQL with better performance

and scalability. However PL/SQL may be a better choice to get a recordset

even if the challenge can be addressed with basic SQL features only. As

a rule, the reason is because of limitations or current implementation

of SQL or specifics of SQL queries. SQL is declarative language and

its implementation in Oracle RDBMS is not open source; thus what is

happening under the hood can be controlled only to some extent. Below is

an attempt to categorize cases when PL/SQL solution is better than vanilla

SQL; please keep in mind that this categorization is quite relative and

some cases may fall into multiple categories.

246

 Specifics of Analytic Functions
Analytic functions are extremely powerful features and they significantly

extend a set of tasks that can be efficiently solved using pure SQL. On the

other hand, analytic functions have some functional limitations as was

shown in the corresponding chapter (Chapter 3) as well as some specifics

in implementation that may be a reason for not achieving the optimal

performance.

 Fetch Termination
The core of the first problem in this subsection is the inability to efficiently

specify in a query that rows should be fetched until some condition is false.

Analytic functions are just a feature that helps to achieve this with pure

SQL, but not always in an efficient way.

Let’s consider a case when it’s required to terminate fetching or stop

returning the rows based on some condition. Listing 11-1 shows a table

with information about transactions, and the goal is to return all the latest

transactions unless the total reaches limit X (or unless N specific rows are

returned).

At least three different approaches may be proposed right off the bat:

• Using analytic functions;

• Implementing logic in table (pipelined) function;

• Fetch data and validate termination condition on

client side.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

247

Listing 11-1. Transaction table

exec dbms_random.seed(1);

create table transaction(id int not null, value number not null);

insert --+ append

into transaction

select rownum, trunc(1000 * dbms_random.value + 1) value

 from dual

connect by rownum <= 3e6;

create index idx_tran_id on transaction(id);

exec dbms_stats.gather_table_stats(user, 'transaction');

Tests are performed on Oracle 12.1.0.2 with

 1) Enabled runtime execution statistics.

alter session set statistics_level = all;

 2) Disabled adaptive plans.

alter session set "_optimizer_adaptive_

plans" = false;

Plans were displayed using command

select *

 from table(dbms_xplan.display_cursor(format => 'IOSTATS LAST'));

IOSTATS was used instead of ALLSTATS mainly due to formatting

purposes – so that plans can fit the page width. Statistics about memory

usage can be displayed by using MEMSTATS or ALLSTATS.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

248

First of all let’s consider a bit simplified task when we need to return

just 10 of the latest transactions. The first approach is an inline view with

order by and filter by rownum. See Listing 11-2.

Listing 11-2. Limiting rows with rownum

select *

 from (select * from transaction order by id desc)

 where rownum <= 10;

 ID VALUE

---------- ----------

 3000000 875

 2999999 890

 2999998 266

 2999997 337

 2999996 570

 2999995 889

 2999994 425

 2999993 64

 2999992 140

 2999991 638

10 rows selected.

Query returns the result almost immediately – less than in a centisecond.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

249

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id

 |
 O

pe
ra

ti
on

 |
Na

me

 |

 S
ta

rt
s

|
E-

Ro
ws

 |
 A

-R
ow

s
|

A-

Ti
me

|
Bu

ff
er

s|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0

 |
 S

EL
EC

T
ST

AT
EM

EN
T

 |

 |

1

|

 |

 1

0
|

00
:0

0:
00

.0
1

|

 7

 |

|*
 1

 |

CO
UN

T
ST

OP
KE

Y

 |

 |

1

|

 |

 1

0
|

00
:0

0:
00

.0
1

|

 7

 |

|
 2

 |

 V
IE

W

 |

 |

1

|

10

 |

 1

0
|

00
:0

0:
00

.0
1

|

 7

 |

|
 3

 |

TA

BL
E

AC
CE

SS
 B

Y
IN

DE
X

RO
WI

D|
 T

RA
NS

AC
TI

ON
 |

1

|
 3

00
0K

 |

 1

0
|

00
:0

0:
00

.0
1

|

 7

 |

|
 4

 |

 I

ND
EX

 F
UL

L
SC

AN
 D

ES
CE

ND
IN

G|
 I

DX
_T

RA
N_

ID
 |

1

|

10

 |

 1

0
|

00
:0

0:
00

.0
1

|

 4

 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

250

This is achieved by reading the index in descending order and

accessing the table by rowid to get the value, but the crucial point is that

reading stops after getting 10 rows.

Let’s now implement the logic using analytic functions. See Listing 11- 3.

Listing 11-3. Limiting rows with row_number

select t1.id, t1.value

 from (select row_number() over(order by id desc) rn, t0.*

 from transaction t0) t1

 where rn <= 10;

Even though the Reads column is missing in the plan, which means that

all data was read from memory and not from disk - Buffers, it took more than

2 seconds to execute (which is multiple times longer than the first approach).

Chapter 11 When pL/SQL IS Better than VanILLa SQL

251

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
Id
 |
 O
pe

ra
ti
on

 |
 N

am
e

 |
 S
ta
rt
s
|
E-
 Ro
ws
 |
 A
-R
ow
s
|

A-
Ti
me

|
Bu
ff
er
s
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
 0
 |
 S
EL

EC
T
ST
AT
EM
EN
T

 |

 |

1
|

 |

 1
0
|
00
:0
0:
02
.0
5
|

 6
04
7
|

|*
 1
 |

VI

EW

 |

 |

1
|

10
 |

 1
0
|
00
:0
0:
02
.0
5
|

 6
04
7
|

|*
 2
 |

 W
IN
DO
W
SO
RT
 P
US
HE
D
RA
NK
 |

 |

1
|
 3
00
0K
 |

 1
0
|
00
:0
0:
02
.0
5
|

 6
04
7
|

|
 3
 |

TA
BL
E
AC
CE
SS
 F
UL
L

 |
 T

RA
NS
AC
TI
ON
 |

1
|
 3
00
0K
 |

30
00
K
|
00
:0
0:
00
.4
6
|

 6
04
7
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

Chapter 11 When pL/SQL IS Better than VanILLa SQL

252

WINDOW SORT PUSHED RANK operation means that ordering is

performed until a specified number of rows is returned, but input data for

this operation is all the rows from the table. In other words, this means

that the full table is scanned but order is guaranteed only for a specified

number of rows.

When using analytic functions we also can take advantage of the

fact that data in an index is ordered, but in this case we have to use an

additional join as shown in Listing 11-4.

Listing 11-4. Limiting rows with row_number - optimized version

select t2.*

 from (select --+ cardinality(10) index_desc(t0 idx_tran_id)

 row_number() over(order by id desc) rn, rowid row_id

 from transaction t0) t1

 join transaction t2

 on t1.row_id = t2.rowid

 where t1.rn <= 10;

We explicitly specified an access method in the inline view to avoid a

full scan and hinted at low cardinality so that Oracle does nested loops.

Execution time is less than a centisecond – similar to the approach with

filter by rownum. An additional join acts as TABLE ACCESS BY USER ROWID

instead of TABLE ACCESS BY INDEX ROWID as in the first approach.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

253

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id

 |
 O

pe
ra

ti
on

 |

 N
am

e

 |
 S

ta
rt

s
|

E-
Ro

ws
 |

 A
-R

ow
s

|

A-
Ti

me

|

Bu
ff

er
s

|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0

 |
 S

EL
EC

T
ST

AT
EM

EN
T

 |

 |

1
|

 |

 1
0

|
00

:0
0:

00
.0

1
|

6

|

|
 1

 |

NE
ST

ED
 L

OO
PS

 |

 |

1
|

10
 |

 1
0

|
00

:0
0:

00
.0

1
|

6

|

|*
 2

 |

 V
IE

W

 |

 |

1
|

10
 |

 1
0

|
00

:0
0:

00
.0

1
|

4

|

|*
 3

 |

WI

ND
OW

 N
OS

OR
T

ST
OP

KE
Y

 |

 |

1
|

10
 |

 1
0

|
00

:0
0:

00
.0

1
|

4

|

|
 4

 |

 I

ND
EX

 F
UL

L
SC

AN
 D

ES
CE

ND
IN

G
 |

 I
DX

_T
RA

N_
ID

 |

1
|

 3
00

0K
 |

 1
1

|
00

:0
0:

00
.0

1
|

4

|

|
 5

 |

TA
BL

E
AC

CE
SS

 B
Y

US
ER

 R
OW

ID
 |

 T
RA

NS
AC

TI
ON

 |

 1

0
|

 1
 |

 1
0

|
00

:0
0:

00
.0

1
|

2

|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

254

T
h

e
la

st
 th

in
g

to
 m

en
ti

on
 a

b
ou

t a
 s

im
p

lif
ie

d
 ta

sk
 is

 th
at

 a
n

 o
p

ti
m

al
 p

la
n

 c
an

 b
e

ac
h

ie
ve

d
 if

 a
 li

m
it

 is

sp
ec

if
ie

d
 u

si
n

g
a

co
n

st
an

t o
r

b
in

d
 v

ar
ia

b
le

. I
f w

e
u

se
 a

 s
ca

la
r

su
b

q
u

er
y
(s
el
ec
t
10
 f
ro
m
du
al
),

 th
en

 th
e

p
la

n
 w

ill
 lo

ok
 li

ke
 th

e
on

e
b

el
ow

.

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
Id
 |
 O
pe
ra
ti
on

|
Na
me

|
St
ar
ts
 |
 E
-R
ow
s
|
A-
Ro
ws
 |

 A
-T
im
e

 |
 B
uf
fe
rs
 |

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
 0
 |
 S
EL
EC
T
ST
AT
EM
EN
T

|

|

 1
 |

|

10
 |
 0
0:
00
:0
3.
37
 |

69
71
 |

|
 1
 |

NE
ST
ED
 L
OO
PS

|

|

 1
 |

 1
0
|

10
 |
 0
0:
00
:0
3.
37
 |

69
71
 |

|*
 2
 |

 V
IE
W

|

|

 1
 |

 1
0
|

10
 |
 0
0:
00
:0
3.
37
 |

69
69
 |

|
 3
 |

WI
ND
OW
 N
OS
OR
T

|

|

 1
 |

 1
0
|
 3
00
0K
 |
 0
0:
00
:0
2.
91
 |

69
69
 |

|
 4
 |

 I
ND
EX
 F
UL
L
SC
AN
 D
ES
CE
ND
IN
G

|
ID
X_
TR
AN
_I
D
|

 1
 |

30
00
K
|
 3
00
0K
 |
 0
0:
00
:0
1.
11
 |

69
69
 |

|
 5
 |

FA
ST
 D
UA
L

|

|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

 0
 |

|
 6
 |

 T
AB
LE
 A
CC
ES
S
BY
 U
SE
R
RO
WI
D

|
TR
AN
SA
CT
IO
N
|

10
 |

1
|

10
 |
 0
0:
00
:0
0.
01
 |

 2
 |

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

Chapter 11 When pL/SQL IS Better than VanILLa SQL

255

You may note that operation WINDOW NOSORT STOPKEY became

WINDOW NOSORT, which means that the index was fully scanned. So if a

limit is calculated using a subquery, then you may want to split the query

into two and use a bind variable for the limit.

Let’s proceed to the original task: we need to fetch the latest rows until

the total amount reaches the limit; let it be 5000.

Obviously, filter by rownum cannot be used in this case. Listing 11-5

shows an analytic approach to limit rows by a cumulative sum.

Listing 11-5. Limiting rows with sum

select t1.id, t1.value

 from (select sum(value) over(order by id desc) s, t0.*

 from transaction t0) t1

 where s <= 5000;

 ID VALUE

---------- ----------

 3000000 875

 2999999 890

 2999998 266

 2999997 337

 2999996 570

 2999995 889

 2999994 425

 2999993 64

 2999992 140

9 rows selected.

You can see in the execution plan that elapsed time is much longer

than for the original query with row_number from Listing 11-3. This is

because all rows have been ordered even though we need only 9 rows in

the result.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

256

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id

 |
 O

pe
ra

ti
on

|
Na

me

|

St
ar

ts
 |

 E
-R

ow
s

|
A-

Ro
ws

 |

A-

Ti
me

 |

 B
uf

fe
rs

 |
 R

ea
ds

 |
 W

ri
te

s
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0

 |
 S

EL
EC

T
ST

AT
EM

EN
T

|

|

 1
 |

|

 9

 |
 0

0:
00

:1
3.

59
 |

60
55

 |
 1

27
46

 |

11
86

1
|

|*
 1

 |

VI
EW

|

|

 1
 |

30

00
K

|

 9

 |
 0

0:
00

:1
3.

59
 |

60
55

 |
 1

27
46

 |

11
86

1
|

|
 2

 |

 W
IN

DO
W

SO
RT

|

|

 1
 |

30

00
K

|
 3

00
0K

 |
 0

0:
00

:1
3.

07
 |

60
55

 |
 1

27
46

 |

11
86

1
|

|
 3

 |

TA

BL
E

AC
CE

SS
 F

UL
L

|
TR

AN
SA

CT
IO

N
|

 1
 |

30

00
K

|
 3

00
0K

 |
 0

0:
00

:0
0.

47
 |

60
47

 |

 0

 |

0
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

C
ol

u
m

n
s

R
ea

d
s/

W
ri

te
s

si
gn

if
y

th
at

 te
m

p
or

ar
y

ta
b

le
sp

ac
e

w
as

 u
se

d
 fo

r
so

rt
. L

et
’s

 r
e-

ru
n

 th
e

te
st

 a
ft

er

in
cr

ea
si

n
g

th
e

so
rt

 a
re

a
si

ze
 to

 it
s

m
ax

im
u

m
 p

os
si

b
le

 v
al

u
e.

al
te
r
se

ss
io
n
se
t
wo
rk
ar
ea
_s
iz
e_
po
li
cy
 =
 m
an
ua
l;

al
te
r
se

ss
io
n
se
t
so
rt
_a
re
a_
si
ze
 =
 2
14
74
83
64
7;

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id

 |
 O

pe
ra

ti
on

|
Na

me

|

St
ar

ts
 |

 E
-R

ow
s

|
A-

Ro
ws

 |

 A
-T

im
e

 |

 B
uf

fe
rs

 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0

 |
 S

EL
EC

T
ST

AT
EM

EN
T

|

|

 1
 |

|

 9

 |
 0

0:
00

:0
4.

95
 |

60
47

 |

|*
 1

 |

VI
EW

|

|

 1
 |

30

00
K

|

 9

 |
 0

0:
00

:0
4.

95
 |

60
47

 |

|
 2

 |

 W
IN

DO
W

SO
RT

|

|

 1
 |

30

00
K

|
 3

00
0K

 |
 0

0:
00

:0
4.

48
 |

60
47

 |

|
 3

 |

TA

BL
E

AC
CE

SS
 F

UL
L

|
TR

AN
SA

CT
IO

N
|

 1
 |

30

00
K

|
 3

00
0K

 |
 0

0:
00

:0
0.

44
 |

60
47

 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

257

After this change there is enough memory to perform a sort, and the

execution time significantly dropped, but there is no need to order all the

rows from the table anyway.

With an assumption that there is continuous numbering for ID (which

happens extremely rarely for real data), we can use the next approach with

recursive subquery factoring.

Listing 11-6. Limiting rows with recursive subquery factoring – for

continuous numbering

with rec(id, value, s) as

(

 select id, value, value

 from transaction

 where id = (select max(id) from transaction)

 union all

 select t.id, t.value, rec.s + t.value

 from transaction t

 join rec on rec.id - 1 = t.id

 where rec.s + t.value <= 5000

)

select * from rec;

Execution time again dropped to 1 centisecond.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

258

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 I
d
|
Op
er
at
io
n

 |
 N
am
e

 |
 S
ta
rt
s
|
E-
Ro
ws
 |
 A
-R
ow
s
|

A-
Ti
me

|
Bu
ff
er
s
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|

0
|
SE
LE
CT
 S
TA
TE
ME
NT

 |

 |

1
|

 |

9
|
00
:0
0:
00
.0
1
|

 3
5
|

|

1
|
 V
IE
W

 |

 |

1
|

 2
 |

9
|
00
:0
0:
00
.0
1
|

 3
5
|

|

2
|

UN
IO
N
AL
L
(R
EC
UR
SI
VE
 W
IT
H)
 B
RE
AD
TH
 F
IR
ST
 |

 |

1
|

 |

9
|
00
:0
0:
00
.0
1
|

 3
5
|

|

3
|

 T
AB
LE
 A
CC
ES
S
BY
 I
ND
EX
 R
OW
ID
 B
AT
CH
ED

 |
 T
RA
NS
AC
TI
ON
 |

1
|

 1
 |

1
|
00
:0
0:
00
.0
1
|

7
|

|*

4
|

IN
DE
X
RA
NG
E
SC
AN

 |
 I
DX
_T
RA
N_
ID
 |

1
|

 1
 |

1
|
00
:0
0:
00
.0
1
|

6
|

|

5
|

 S
OR
T
AG
GR
EG
AT
E

 |

 |

1
|

 1
 |

1
|
00
:0
0:
00
.0
1
|

3
|

|

6
|

IN
DE
X
FU
LL
 S
CA
N
(M
IN
/M
AX
)

 |
 I
DX
_T
RA
N_
ID
 |

1
|

 1
 |

1
|
00
:0
0:
00
.0
1
|

3
|

|

7
|

 N
ES
TE
D
LO
OP
S

 |

 |

9
|

 1
 |

8
|
00
:0
0:
00
.0
1
|

 2
8
|

|

8
|

NE
ST
ED
 L
OO
PS

 |

 |

9
|

 1
 |

9
|
00
:0
0:
00
.0
1
|

 1
9
|

|

9
|

 R
EC
UR
SI
VE
 W
IT
H
PU
MP

 |

 |

9
|

 |

9
|
00
:0
0:
00
.0
1
|

0
|

|*
 1
0
|

 I
ND
EX
 R
AN
GE
 S
CA
N

 |
 I
DX
_T
RA
N_
ID
 |

9
|

 1
 |

9
|
00
:0
0:
00
.0
1
|

 1
9
|

|*
 1
1
|

TA
BL
E
AC
CE
SS
 B
Y
IN
DE
X
RO
WI
D

 |
 T
RA
NS
AC
TI
ON
 |

9
|

 1
 |

8
|
00
:0
0:
00
.0
1
|

9
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

259

For Oracle 12c it’s easy to handle gaps in ID numbering (for older

versions, you can use methods described in the subsection “Correlated

Inline Views and Subqueries” in the first chapter) as shown in Listing 11-7.

Listing 11-7. Limiting rows with recursive subquery factoring –

generic case

with rec(id, value, s) as

(

 select id, value, value

 from transaction

 where id = (select max(id) from transaction)

 union all

 select t.id, t.value, rec.s + t.value

 from rec

 cross apply (select max(id) id from transaction where id <

rec.id) t0

 join transaction t on t0.id = t.id

 where rec.s + t.value <= 5000

)

cycle id set c to 1 default 0

select * from rec;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

260

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 I
d
|
Op
er
at
io
n

 |
 N
am
e

|
St
ar
ts
 |
 E
-R
ow
s
|
A-
Ro
ws
 |

 A
-T
im
e

 |
 B
uf
fe
rs
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|

0
|
SE
LE
CT
 S
TA
TE
ME
NT

 |

|

 1
 |

|

 9
 |
 0
0:
00
:0
0.
01
 |

 5
4
|

|

1
|
 V
IE
W

 |

|

 1
 |

2
|

 9
 |
 0
0:
00
:0
0.
01
 |

 5
4
|

|

2
|

UN
IO
N
AL
L
(R
EC
UR
SI
VE
 W
IT
H)
 B
RE
AD
TH
 F
IR
ST
 |

|

 1
 |

|

 9
 |
 0
0:
00
:0
0.
01
 |

 5
4
|

|

3
|

 T
AB
LE
 A
CC
ES
S
BY
 I
ND
EX
 R
OW
ID
 B
AT
CH
ED

 |
 T
RA
NS
AC
TI
ON

|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

7
|

|*

4
|

IN
DE
X
RA
NG
E
SC
AN

 |
 I
DX
_T
RA
N_
ID

|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

6
|

|

5
|

 S
OR
T
AG
GR
EG
AT
E

 |

|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

3
|

|

6
|

IN
DE
X
FU
LL
 S
CA
N
(M
IN
/M
AX
)

 |
 I
DX
_T
RA
N_
ID

|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

3
|

|

7
|

 N
ES
TE
D
LO
OP
S

 |

|

 9
 |

1
|

 8
 |
 0
0:
00
:0
0.
01
 |

 4
7
|

|

8
|

NE
ST
ED
 L
OO
PS

 |

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 3
8
|

|

9
|

 N
ES
TE
D
LO
OP
S

 |

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 1
9
|

|
 1
0
|

RE
CU
RS
IV
E
WI
TH
 P
UM
P

 |

|

 9
 |

|

 9
 |
 0
0:
00
:0
0.
01
 |

0
|

|
 1
1
|

VI
EW

 |
 V
W_
LA
T_
EC
72
57
98
|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 1
9
|

|
 1
2
|

 S
OR
T
AG
GR
EG
AT
E

 |

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 1
9
|

|
 1
3
|

FI
RS
T
RO
W

 |

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 1
9
|

|*
 1
4
|

 I
ND
EX
 R
AN
GE
 S
CA
N
(M
IN
/M
AX
)

 |
 I
DX
_T
RA
N_
ID

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 1
9
|

|*
 1
5
|

 I
ND
EX
 R
AN
GE
 S
CA
N

 |
 I
DX
_T
RA
N_
ID

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

 1
9
|

|*
 1
6
|

TA
BL
E
AC
CE
SS
 B
Y
IN
DE
X
RO
WI
D

 |
 T
RA
NS
AC
TI
ON

|

 9
 |

1
|

 9
 |
 0
0:
00
:0
0.
01
 |

9
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

261

You may note the cycle clause in the query. Even though cycle mark is

zero for all the rows, without a cycle clause, the query fails with «ORA- 32044:

cycle detected while executing recursive WITH query». This is not

quite correct behavior and it will be discussed later on in the current chapter.

Well, recursive subquery factoring helps to get a result in quite an

efficient way on the last versions, but what if we need to implement more

complex logic than the limit for the cumulative sum or we use the old

version that does not support recursive subquery factoring. Listing 11- 8

shows how logic can be encapsulated in a PL/SQL function as well as create

statements for required types.

Listing 11-8. Types and function for limiting rows

create or replace type to_id_value as object(id int, value

number)

/

create or replace type tt_id_value as table of to_id_value

/

create or replace function f_transaction(p_limit in number)

 return tt_id_value

 pipelined is

 l_limit number := 0;

begin

 for i in (select --+ index_desc(transaction idx_tran_id)

 *

 from transaction

 order by id desc) loop

 l_limit := l_limit + i.value;

 if l_limit <= 5000 then

 pipe row(to_id_value(i.id, i.value));

Chapter 11 When pL/SQL IS Better than VanILLa SQL

262

 else

 exit;

 end if;

 end loop;

end f_transaction;

/

The average execution time is a two hundredth of a second.

Listing 11-9. Limiting rows with PL/SQL function

select * from table(f_transaction(p_limit => 5000));

 ID VALUE

---------- ----------

 3000000 875

 2999999 890

 2999998 266

 2999997 337

 2999996 570

 2999995 889

 2999994 425

 2999993 64

 2999992 140

9 rows selected.

Elapsed: 00:00:00.02

Let’s add a unique combination of symbols into hint «--+ index_

desc(transaction idx_tran_id) zzz» and recompile the function so that

we can easily find details for the required statement in v$sql. After a couple

of executions, the stats are the following.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

263

column sql_text format a50

select executions, rows_processed, sql_text

 from v$sql v

 where sql_text like '%index_desc(transaction idx_tran_id) zzz%'

 and sql_text not like '%v$sql%';

EXECUTIONS ROWS_PROCESSED SQL_TEXT

---------- -------------- ------------------------------------

 2 20 SELECT --+ index_desc(transaction

idx_tran_id) zzz

 * FROM TRANSACTION ORDER BY ID DESC

Even though there is no filter in a query, only 20 rows have been

processed (fetched), which means 10 rows per execution as expected.

A similar approach can be implemented in a client application, but the

ability to encapsulate the logic into a PL/SQL function is quite important.

The last thing to note regarding queries with limits is that the so-called

Top-N Queries have been introduced in Oracle 12c. No fundamental changes

have been made in the SQL engine for this functionality, and if you have

a look at the final query after transformation for Ton-N syntax, you will

see analytic functions. So in a nutshell Top-N is just syntactic sugar and

avoiding it makes it possible to write more efficient queries in many cases – in

particular, you can apply an optimization technique as shown in Listing 11-4.

I suppose this functionality was introduced due to following reasons:

• Marketing reasons. Other RDBMSs have this feature

and now it’s in Oracle as well;

• Simplifying migration from other RDBMSs;

• Simplicity to write ad hoc queries for non-expert

database developers;

 Using this feature for complex performance-critical

queries is not reasonable.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

264

 Avoiding Multiple Sorts
The second use case regarding analytic functions will be about ordering

that is caused by analytics. Listing 11-10 shows a fact table with low

cardinality dimensions.

Listing 11-10. Fact table with low cardinality dimensions

exec dbms_random.seed(1);

create table fact_a as

select date '2010-01-01' + level / (60 * 24) dt,

 trunc(3 * dbms_random.value()) dim_1_id,

 trunc(3 * dbms_random.value()) dim_2_id,

 trunc(1000 * dbms_random.value()) value

 from dual

connect by level <= 3e6;

exec dbms_stats.gather_table_stats(user, 'fact_a');

The goal is to calculate a cumulative sum by each dimension and their

combination - dim_1_id, dim_2_id with ordering by date.

select dt,

 dim_1_id,

 dim_2_id,

 value,

 sum(val) over(partition by dim_1_id order by dt) dim1_sum,

 sum(val) over(partition by dim_2_id order by dt) dim2_sum,

 sum(val) over(partition by dim_1_id, dim_2_id order by dt)

 dim1_dim2_sum

 from fact_a

 order by dt

Chapter 11 When pL/SQL IS Better than VanILLa SQL

265

To minimize fetch let’s use the following query, which returns only a

single row.

select to_char(sum(dim1_sum), lpad('9', 20, '9')) d1,

 to_char(sum(dim2_sum), lpad('9', 20, '9')) d2,

 to_char(sum(dim1_dim2_sum), lpad('9', 20, '9')) d12

 from (select dt,

 dim_1_id,

 dim_2_id,

 value,

 sum(value) over(partition by dim_1_id order by

dt) dim1_sum,

 sum(value) over(partition by dim_2_id order by

dt) dim2_sum,

 sum(value) over(partition by dim_1_id, dim_2_id

order by dt)

 dim1_dim2_sum

 from fact_a

 order by dt);

D1 D2 D12

------------------- --------------------- ---------------------

 749461709848354 749461230723892 249821726573778

There are three sorts in the query plan even though ordering always by

dt. This is because the expression for partitioning differs.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

266

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id
 |
 O
pe
ra
ti
on

|
Na
me

 |
 S
ta
rt
s
|
E-
Ro
ws

|
A-
 Ro
ws

|

A-
Ti
me

|
Bu
ff
er
s
|
Re
ad
s
|
Wr
it
es
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0
 |
 S
EL
EC
T
ST
AT
EM
EN
T

|

 |

1
|

|

 1

|
00
:0
1:
21
.8
5
|

 9
27
2
|
96
05
1
|
 9
07
17
 |

|
 1
 |

SO
RT
 A
GG
RE
GA
TE

|

 |

1
|

 1

|

 1

|
00
:0
1:
21
.8
5
|

 9
27
2
|
96
05
1
|
 9
07
17
 |

|
 2
 |

 V
IE
W

|

 |

1
|

30
00
K
|

30
00
K
|
00
:0
1:
21
.0
6
|

 9
27
2
|
96
05
1
|
 9
07
17
 |

|
 3
 |

SO
RT
 O
RD
ER
 B
Y

|

 |

1
|

30
00
K
|

30
00
K
|
00
:0
1:
20
.0
5
|

 9
27
2
|
96
05
1
|
 9
07
17
 |

|
 4
 |

 W
IN
DO
W
SO
RT

|

 |

1
|

30
00
K
|

30
00
K
|
00
:0
1:
11
.4
6
|

 9
26
7
|
82
09
8
|
 7
67
64
 |

|
 5
 |

WI
ND
OW
 S
OR
T

|

 |

1
|

30
00
K
|

30
00
K
|
00
:0
0:
42
.9
1
|

 9
25
7
|
48
72
1
|
 4
56
85
 |

|
 6
 |

 W
IN
DO
W
SO
RT

|

 |

1
|

30
00
K
|

30
00
K
|
00
:0
0:
20
.2
8
|

 9
24
9
|
21
50
4
|
 2
02
84
 |

|
 7
 |

TA
BL
E
AC
CE
SS
 F
UL
L
|
FA
CT
_A
 |

1
|

30
00
K
|

30
00
K
|
00
:0
0:
00
.4
9
|

 9
24
0
|

0
|

 0
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

267

Total execution time is approximately 1 minute and 20 seconds and as

we see in columns Reads/Writes, all three sorts cause reads/writes from

temporary tablespace. Let’s set the maximum possible memory for sort

and re-run the query.

alter session set workarea_size_policy = manual;

alter session set sort_area_size = 2147483647;

The elapsed time dropped four times and all the sorts have been

performed in memory.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

268

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id

 |
 O

pe
ra

ti
on

|
Na

me

 |
 S

ta
rt

s
|

E-
Ro

ws

|
A-

 Ro
ws

|

A-

Ti
me

|
Bu

ff
er

s
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0

 |
 S

EL
EC

T
ST

AT
EM

EN
T

|

 |

1
|

|

 1

|

00
:0

0:
21

.0
8

|

 9
24

0
|

|
 1

 |

SO
RT

 A
GG

RE
GA

TE

|

 |

1
|

 1

|

 1

|

00
:0

0:
21

.0
8

|

 9
24

0
|

|
 2

 |

 V
IE

W

|

 |

1
|

30

00
K

|

30
00

K
|

00
:0

0:
20

.4
1

|

 9
24

0
|

|
 3

 |

SO

RT
 O

RD
ER

 B
Y

|

 |

1
|

30

00
K

|

30
00

K
|

00
:0

0:
19

.5
9

|

 9
24

0
|

|
 4

 |

 W

IN
DO

W
SO

RT

|

 |

1
|

30

00
K

|

30
00

K
|

00
:0

0:
17

.5
0

|

 9
24

0
|

|
 5

 |

WI
ND

OW
 S

OR
T

|

 |

1
|

30

00
K

|

30
00

K
|

00
:0

0:
11

.8
3

|

 9
24

0
|

|
 6

 |

 W
IN

DO
W

SO
RT

|

 |

1
|

30

00
K

|

30
00

K
|

00
:0

0:
06

.5
8

|

 9
24

0
|

|
 7

 |

TA

BL
E

AC
CE

SS
 F

UL
L

|
FA

CT
_A

 |

1
|

30

00
K

|

30
00

K
|

00
:0

0:
00

.4
7

|

 9
24

0
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

269

Taking into account the specifics of analytic widows in this query, we

can implement the required logic using PL/SQL associative arrays and a

cursor with a single order by. Listing 11-11 shows this approach and the

required types.

Listing 11-11. Avoiding multiple sort operations

create or replace function f_fact_a return tt_fact_a

 pipelined is

 type tt1 is table of number index by pls_integer;

 type tt2 is table of tt1 index by pls_integer;

 l_dim1 tt1;

 l_dim2 tt1;

 l_dim12 tt2;

begin

 for r in (select /*+ lvl 0 */

 dt, dim_1_id, dim_2_id, value

 from fact_a

 order by dt) loop

 -- NoFormat Start

 l_dim1(r.dim_1_id) := case

 when l_dim1.exists(r.dim_1_id)

 then l_dim1(r.dim_1_id)

 else 0

 end + r.value;

 l_dim2(r.dim_2_id) := case

 when l_dim2.exists(r.dim_2_id)

 then l_dim2(r.dim_2_id)

 else 0

 end + r.value;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

270

 l_dim12(r.dim_1_id)(r.dim_2_id) :=

 case

 when l_dim12.exists(r.dim_1_id)

 and l_dim12(r.dim_1_id).exists(r.dim_2_id)

 then l_dim12(r.dim_1_id)(r.dim_2_id)

 else 0

 end + r.value;

 -- NoFormat End

 pipe row(to_fact_a(r.dt,

 r.dim_1_id,

 r.dim_2_id,

 r.value,

 l_dim1(r.dim_1_id),

 l_dim2(r.dim_2_id),

 l_dim12(r.dim_1_id) (r.dim_2_id)));

 end loop;

end;

/

create or replace type to_fact_a as object

(

 dt date,

 dim_1_id number,

 dim_2_id number,

 value number,

 dim1_sum number,

 dim2_sum number,

 dim1_dim2_sum number

)

/

create or replace type tt_fact_a as table of to_fact_a

/

Chapter 11 When pL/SQL IS Better than VanILLa SQL

271

Let’s compile a function with disabled PL/SQL optimization.

alter session set plsql_optimize_level = 0;

alter function f_fact_a compile;

set timing on

select to_char(sum(dim1_sum), lpad('9', 20, '9')) d1,

 to_char(sum(dim2_sum), lpad('9', 20, '9')) d2,

 to_char(sum(dim1_dim2_sum), lpad('9', 20, '9')) d12

 from table(f_fact_a)

 order by dt;

The average execution time is around 45 seconds, which is worse than

an SQL approach.

Let’s now change the parameter value «plsql_optimize_level» to 2

(this is default value) and compile the function after replacing «/*+ lvl 0

/» with «/+ lvl 2 */» in the code.

The average execution time became 12-14 seconds, which is better

than the SQL approach.

The reason for such a significant improvement is that the fetch size

for the default optimization level is 100 rows. You can easily check that in

v$sql view.

select regexp_substr(sql_text, '/.*/') hint,

 executions,

 fetches,

 rows_processed

 from v$sql s

 where sql_text like '%FROM FACT_A%'

 and sql_text not like '%v$sql%';

HINT EXECUTIONS FETCHES ROWS_PROCESSED

--------------- ---------- ---------- --------------

/*+ lvl 0 */ 2 6000002 6000000

/*+ lvl 2 */ 2 60002 6000000

Chapter 11 When pL/SQL IS Better than VanILLa SQL

272

So the PL/SQL approach is approximately 35% faster for this task, but

for a larger number of cumulative sums the difference would be more

substantial, and more importantly, it’s possible to increase the fetch size,

which would make the PL/SQL approach several times faster. Additional

information about that can be found in “Doing SQL from PL/SQL: Best

and Worst Practices” [9].

 Iterative-Like Computations
Oracle provides at least two ways to perform iterative-like computations in

SQL on top of recordset: iterative model and recursive subquery factoring.

The source data for an iterative model is a single recordset and you cannot

use any additional data structures like list or stack; and, secondly, there

may be only one loop counter (for academic interest implementation

of bubble sort using iterative model was shown in Chapter 10, ”Turing

Completeness”). The specifics of recursive subquery factoring are that

on each iteration you can use data only from the previous iteration even

though the result set contains data from all the iterations. Briefly speaking,

the field of application for these features is quite limited, not to mention

issues with scalability and intensive memory and CPU usage.

You can find in the next chapter some solutions with iterative models

or recursive subquery factoring and their comparison with PL/SQL

approaches. In this chapter, however, we will consider a couple of tasks

that can be solved in pure SQL without those advanced features and their

alternatives in PL/SQL.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

273

 When There Is No Effective Built-In Access
Method
Let’s assume the goal is to return distinct values for a not nullable column

with low cardinality.

create table t_str(str varchar2(30) not null, padding

varchar2(240));

insert into t_str

select 'AAA', lpad('x', 240, 'x') from dual

union all

select 'BBB', lpad('x', 240, 'x') from dual

union all

select lpad('C', 30, 'C'), lpad('x', 240, 'x') from dual

connect by rownum <= 3e6

union all

select 'DDD', lpad('x', 240, 'x') from dual;

create index t_str_idx on t_str(str);

exec dbms_stats.gather_table_stats(user,'t_str');

Of course, a trivial solution is using a distinct keyword.

select distinct str from t_str;

STR

BBB

AAA

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DDD

Chapter 11 When pL/SQL IS Better than VanILLa SQL

274

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id

 |
 O

pe
ra

ti
on

|

Na
me

|

St
ar

ts
 |

 E
-R

ow
s

 |
 A

-R
ow

s
 |

 A

-T
im

e

 |
 B

uf
fe

rs
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0

 |
 S

EL
EC

T
ST

AT
EM

EN
T

|

|

 1
 |

 |

4
 |

 0
0:

00
:0

1.
04

 |

 1
76

62
 |

|
 1

 |

HA
SH

 U
NI

QU
E

|

|

 1
 |

4

 |

4
 |

 0
0:

00
:0

1.
04

 |

 1
76

62
 |

|
 2

 |

 I
ND

EX
 F

AS
T

FU
LL

 S
CA

N
|

T_
ST

R_
ID

X
|

 1
 |

 3

00
0K

 |

 3
00

0K
 |

 0
0:

00
:0

0.
53

 |

 1
76

62
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

275

Execution time is more than 1 second and it required almost 18k

logical reads.

Listing 11-12 shows how recursive subquery factoring can be used for

getting a list of distinct values for a column.

Listing 11-12. Using recursive subquery factoring to get distinct

values for a column

with rec(lvl, str) as

(

 select 1, min(str) from t_str

 union all

 select lvl + 1, (select min(str) from t_str where str > rec.str)

 from rec

 where str is not null

)

select * from rec where str is not null;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

276

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
Id
 |
 O
pe
ra
ti
on

|
Na
me

|
St
ar
ts
 |
 E
-R
ow
s
|
A-
Ro
ws
 |

 A
-T
im
e

 |
 B
uf
fe
rs
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 0
 |
 S
EL
EC
T
ST
AT
EM
EN
T

|

|

 1
 |

|

 4
 |
 0
0:
00
:0
0.
01
 |

13
 |

|*
 1
 |

VI
EW

|

|

 1
 |

2
|

 4
 |
 0
0:
00
:0
0.
01
 |

13
 |

|
 2
 |

 U
NI
ON
 A
LL
 (
RE
CU
RS
IV
E
WI
TH
)
BR
EA
DT
H
FI
RS
T
|

|

 1
 |

|

 5
 |
 0
0:
00
:0
0.
01
 |

13
 |

|
 3
 |

SO
RT
 A
GG
RE
GA
TE

|

|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

 3
 |

|
 4
 |

 I
ND
EX
 F
UL
L
SC
AN
 (
MI
N/
MA
X)

|
T_
ST
R_
ID
X
|

 1
 |

1
|

 1
 |
 0
0:
00
:0
0.
01
 |

 3
 |

|
 5
 |

SO
RT
 A
GG
RE
GA
TE

|

|

 4
 |

1
|

 4
 |
 0
0:
00
:0
0.
01
 |

10
 |

|
 6
 |

 F
IR
ST
 R
OW

|

|

 4
 |

1
|

 3
 |
 0
0:
00
:0
0.
01
 |

10
 |

|*
 7
 |

IN
DE
X
RA
NG
E
SC
AN
 (
MI
N/
MA
X)

|
T_
ST
R_
ID
X
|

 4
 |

1
|

 3
 |
 0
0:
00
:0
0.
01
 |

10
 |

|
 8
 |

RE
CU
RS
IV
E
WI
TH
 P
UM
P

|

|

 5
 |

|

 4
 |
 0
0:
00
:0
0.
01
 |

 0
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

277

The execution time dropped more than 100 times and the number

for logical reads reduced more than 1000 times. This was achieved by

performing a few “INDEX RANGE SCAN (MIN/MAX)” operations instead of

“INDEX FAST FULL SCAN”.

Listing 11-13 shows how similar logic can be implemented using PL/

SQL function for old Oracle versions.

Listing 11-13. PL/SQL function to get distinct values for a column

create or replace function f_str return strings

 pipelined is

 l_min t_str.str%type;

begin

 select min(str) into l_min from t_str;

 pipe row(l_min);

 while true loop

 select min(str) into l_min from t_str where str > l_min;

 if l_min is not null then

 pipe row(l_min);

 else

 return;

 end if;

 end loop;

end f_str;

/

Let’s analyze performance using a dbms_hprof package:

exec dbms_hprof.start_profiling('UDUMP', '1.trc');

PL/SQL procedure successfully completed.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

278

select column_value str from table(f_str);

STR

AAA

BBB

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DDD

exec dbms_hprof.stop_profiling;

PL/SQL procedure successfully completed.

select dbms_hprof.analyze('UDUMP', '1.trc') runid from dual;

 RUNID

 4

Listing 11-13 shows profiling results. As you see, the query on the 5th line

was executed once and the query from the 8th line was executed 4 times, and

the total elapsed time is 931 microseconds or approximately 0.01 second,

which is very close to the approach with recursive subquery factoring.

Listing 11-14. Execution statistics using dbms_hprof

select pci.runid,

 level depth,

 rpad(' ', (level - 1) * 3, ' ') || fi.function as name,

 fi.subtree_elapsed_time,

 fi.function_elapsed_time,

 fi.calls

 from (select runid, parentsymid, childsymid

 from dbmshp_parent_child_info

 union all

 select runid, null, 2 from dbmshp_runs) pci

Chapter 11 When pL/SQL IS Better than VanILLa SQL

279

 join dbmshp_function_info fi

 on pci.runid = fi.runid

 and pci.childsymid = fi.symbolid

 and fi.function <> 'STOP_PROFILING'

connect by prior childsymid = parentsymid

 and prior pci.runid = pci.runid

 start with pci.parentsymid is null

 and pci.runid in (4);

RUNID DEPTH NAME SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED_TIME CALLS

----- ------ --------------------------- -------------------- --------------------- -----

 4 1 __plsql_vm 931 16 3

 4 2 __anonymous_block 77 77 1

 4 2 F_STR 838 110 2

 4 3 __static_sql_exec_line5 198 198 1

 4 3 __static_sql_exec_line8 530 530 4

Additional statistics for SQL statements can be found in v$sql as was

shown in a previous example.

 Problems of a Combinatorial Nature
Combinatorial problems related to data may require generating

permutations to analyze combinations of elements. SQL provides various

ways to generate recordsets – connect by, recursive subquery factoring,

and a model clause; but if you want to refer or reuse during the generation

process the data generated so far, then this may be either tricky or inefficient.

Let’s consider a specific example: for a set or rows, generate sums of

values for all possible subsets with two or more elements. Listing 11-15

shows the script to generate a recordset of values such as each value is

greater than the sum of all values generated so far; thus the sum of values

for each subset is unique.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

280

Listing 11-15. Creating input set

exec dbms_random.seed(3);

create table t_num as

select id, num

 from dual

model

dimension by (1 id)

measures (1 num)

 (

 num[for id from 2 to 19 increment 1] order by id =

 sum(num)[any] + trunc(dbms_random.value(1, 11))

);

All permutations and sums for the first three elements are below:

select * from t_num where id <= 3;

 ID NUM

---------- ----------

 1 1

 2 8

 3 15

1 + 8 = 9

1 + 15 = 16

8 + 15 = 23

1 + 8 + 15 = 24

Chapter 11 When pL/SQL IS Better than VanILLa SQL

281

For measuring performance we will calculate the total sum to

minimize fetch, but the main goal is to generate all the subsets and

calculate sums. The number of all subsets for n elements is 2n including

empty subset, singletons, and original set. The total sum without

singletons equals to
2

2
2 1

1 1

1

1

n

i

n

i
i

n

i
n

i

n

ix x x
= =

−

=
∑ ∑ ∑− = −() or 72 for three rows and

536338548711 for all rows.

select sum(num) * (power(2, count(*) - 1) - 1) total from t_num;

 TOTAL

 536338548711

There are at least two straightforward ways to generate all

permutations with connect by and calculate their sums as demonstrated in

Listing 11-16.

Listing 11-16. Connect by + join to get sums of all subsets

with

t1 as

 (select power(2, rownum-1) row_mask, num from t_num),

t2 as

 (select rownum as total_mask

 from (select count(*) as cnt from t1)

 connect by rownum < power(2, cnt)

 -- or the same: from t1 connect by num > prior num

)

Chapter 11 When pL/SQL IS Better than VanILLa SQL

282

select count(*) cnt, sum(num) sum_num

 from (select total_mask as id, sum(num) as num

 from t2, t1

 where bitand(row_mask, total_mask) <> 0

 group by total_mask

 having count(*) > 1);

 CNT SUM_NUM

---------- -------------

 524268 536338548711

With execution time around 25 seconds, most of the time was spent

on doing nested loops and re-evaluating subquery t1 524268 times. This

can be optimized if we specify the hint materialized in t1; after that the

execution time drops to 14 seconds.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

283

--
--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 I
d
|
Op
er

at
io
n

|
Na
me

|
St
ar
ts

|
E-
Ro
ws
 |
 A
-R
ow
s
 |

A-
Ti
me

 |
 B
uf
fe
rs

|
Re
ad
s
|
Wr
it
es
 |

--
--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|

0
|
SE
LE

CT
 S
TA
TE
ME
NT

|

|

 1

|

 |

1
 |
 0
0:
00
:2
5.
81
 |

15
72
K
|

86
8
|

 8
68
 |

|

1
|
 S
OR

T
AG
GR
EG
AT
E

|

|

 1

|

 1
 |

1
 |
 0
0:
00
:2
5.
81
 |

15
72
K
|

86
8
|

 8
68
 |

|

2
|

VI

EW

|

|

 1

|

 1
 |

52
4K
 |
 0
0:
00
:2
5.
70
 |

15
72
K
|

86
8
|

 8
68
 |

|*

3
|

 F
IL
TE
R

|

|

 1

|

 |

52
4K
 |
 0
0:
00
:2
5.
54
 |

15
72
K
|

86
8
|

 8
68
 |

|

4
|

HA
SH
 G
RO
UP
 B
Y

|

|

 1

|

 1
 |

52
4K
 |
 0
0:
00
:2
5.
36
 |

15
72
K
|

86
8
|

 8
68
 |

|

5
|

 N
ES
TE
D
LO
OP
S

|

|

 1

|

 1
 |

 4
98
0K
 |
 0
0:
00
:2
2.
24
 |

15
72
K
|

0
|

 0
 |

|

6
|

VI
EW

|

|

 1

|

 1
 |

52
4K
 |
 0
0:
00
:0
1.
39
 |

 3

|

0
|

 0
 |

|

7
|

 C
OU
NT

|

|

 1

|

 |

52
4K
 |
 0
0:
00
:0
1.
17
 |

 3

|

0
|

 0
 |

|

8
|

CO
NN
EC
T
BY
 W
IT
HO
UT
 F
IL
TE
RI
NG

|

|

 1

|

 |

52
4K
 |
 0
0:
00
:0
0.
98
 |

 3

|

0
|

 0
 |

|

9
|

 V
IE
W

|

|

 1

|

 1
 |

1
 |
 0
0:
00
:0
0.
01
 |

 3

|

0
|

 0
 |

|
 1
0
|

SO
RT
 A
GG
RE
GA
TE

|

|

 1

|

 1
 |

1
 |
 0
0:
00
:0
0.
01
 |

 3

|

0
|

 0
 |

|
 1
1
|

 V
IE
W

|

|

 1

|

19
 |

 1
9
 |
 0
0:
00
:0
0.
01
 |

 3

|

0
|

 0
 |

|
 1
2
|

CO
UN
T

|

|

 1

|

 |

 1
9
 |
 0
0:
00
:0
0.
01
 |

 3

|

0
|

 0
 |

|
 1
3
|

 T
AB
LE
 A
CC
ES
S
FU
LL

|
T_
NU
M
|

 1

|

19
 |

 1
9
 |
 0
0:
00
:0
0.
01
 |

 3

|

0
|

 0
 |

|*
 1
4
|

VI
EW

|

|

 5
24
K
|

 1
 |

 4
98
0K
 |
 0
0:
00
:1
9.
37
 |

15
72
K
|

0
|

 0
 |

|
 1
5
|

 C
OU
NT

|

|

 5
24
K
|

 |

 9
96
1K
 |
 0
0:
00
:1
0.
07
 |

15
72
K
|

0
|

 0
 |

|
 1
6
|

TA
BL
E
AC
CE
SS
 F
UL
L

|
T_
NU
M
|

 5
24
K
|

19
 |

 9
96
1K
 |
 0
0:
00
:0
7.
02
 |

15
72
K
|

0
|

 0
 |

--
--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

284

We can avoid join if we generate a sum expression with sys_connect_

by_path function and implement a function to evaluate it – this approach

is shown in Listing 11-17.

Listing 11-17. Connect by + UDF to get sums of all subsets

select count(*) cnt, sum(f_calc(path)) sum_num

 from (select sys_connect_by_path(num, '+') || '+' as path

 from t_num

 where level > 1

 connect by num > prior num);

create or replace function f_calc(p_str in varchar2) return

number is

 pragma udf;

 result number := 0;

 i int := 0;

 n varchar2(30);

begin

 while true loop

 i := i + 1;

 n := substr(p_str,

 instr(p_str, '+', 1, i) + 1,

 instr(p_str, '+', 1, i + 1) - instr(p_str, '+',

1, i) - 1);

 if n is not null then

 result := result + n;

 else

 exit;

 end if;

 end loop;

 return result;

end f_calc;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

285

Execution takes around 7 seconds if we specify «pragma udf» and

10 seconds otherwise. Most of the resources are used for evaluating an

expression for sum, if we comment out «sum(f_calc(path))» then the

execution time is less than 1 second.

Let’s now use a temporary table to store intermediate results:

create global temporary table tmp(lvl int, x int, num number);

This makes it possible to generate sums of all the combinations in just

half a second!

begin

 insert into tmp (lvl, x, num)

 select 1, rownum, num from (select num from t_num order by

num);

 for c in (select rownum x, num

 from (select num from t_num order by num)) loop

 insert into tmp (lvl, x, num)

 select c.x, 0, tmp.num + c.num from tmp where tmp.x < c.x;

 end loop;

end;

/

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.53

select count(*) cnt, sum(num) sum_num from tmp where lvl > 1;

 CNT SUM_NUM

---------- -------------

 524268 536338548711

Elapsed: 00:00:00.03

Chapter 11 When pL/SQL IS Better than VanILLa SQL

286

Obviously, a PL/SQL approach performs much better that an SQL

for this task. PL/SQL code gives an impression that this logic can also be

implemented using recursive subquery factoring. But there is one catch –

in a PL/SQL loop, we need an entire tmp table that contains data from

all the iterations while recursive subquery factoring accesses data only

from a previous iteration. We can use a trick with an additional join to

add a recordset from a previous iteration to a recordset from the current

iteration. This approach is shown in Listing 11-18.

Listing 11-18. Recursive subquery factoring to get sums of all subsets

with

r0(x, num) as

 (select rownum, num from (select num from t_num order by num)),

rec(iter, lvl, x, num) as

 (select 1, 1, rownum, num from r0

 union all

 select rec.iter + 1,

 decode(z.id, 1, rec.lvl, rec.lvl + 1),

 decode(z.id, 1, rec.x, 0),

 decode(z.id, 1, rec.num, rec.num + r0.num)

 from rec

 join r0

 on rec.iter + 1 = r0.x

 join (select 1 id from dual union all select 2 id from dual) z

 on (z.id = 1 or rec.x < r0.x))

select count(*) cnt, sum(num) sum_num

 from rec

 where iter = (select count(*) from t_num)

 and lvl > 1;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

287

Even though it works and produces a correct result, this approach is

quite inefficient because on each iteration, we replicate all the data from

previous iterations. If we set sort_area_size to the maximum value, then

the elapsed time is around 30 seconds but anyway this was demonstrated

mainly for academic purposes to show that even a simple PL/SQL loop

may not be efficiently re-implemented using recursive subquery factoring.

If we change join order in the query, then it will fail with «ORA-32044:

cycle detected while executing recursive WITH query» and to avoid

that cycle clause is required even though this is a logically equivalent

query and has the same plan as the query from Listing 11-18 even without

a cycle clause.

...

 from rec

 cross join (select 1 id from dual union all select 2 id from

dual) z

 join r0

 on rec.iter + 1 = r0.x

 where (z.id = 1 or rec.x < r0.x))

cycle iter set c to 1 default 0

...

Two tasks have been analyzed in this section; in the first case,

iterations help to avoid scanning unnecessary data or to “optimize plan,”

while the second task has an iterative nature itself.

 Specifics of Joins and Subqueries
SQL was designed to work with recordsets and, in fact, there are only

three join methods – HASH JOIN, NESTED LOOPS, and MERGE JOIN. All

of them have pros and cons and various scopes of application; HASH

JOIN and MERGE JOIN cannot be used for any arbitrary predicate, unlike

NESTED LOOPS.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

288

Speaking about subqueries, there are some limitations, for instance, a

nesting limit for correlated subqueries that sometimes makes it impossible

to implement complex logic in a subquery. These limitations, along with

some other details and examples, will be considered in the following

subsections.

 Specifics of Joins
In this subsection we will consider a task when PL/SQL helps to

implement a look-up in a more efficient way than SQL.

Listing 11-19 shows a script to create a table with information about

phone calls containing phone numbers and durations in minutes.

Listing 11-19. Table with information about phone calls

create table phone_call (num varchar2(11), duration int);

exec dbms_random.seed(1);

insert --+ append

into phone_call

 select '01' || to_char(trunc(1e9 * dbms_random.value),

'fm099999999'),

 trunc(dbms_random.value(1, 5 + 1))

 from dual

 connect by level <= 1e6;

commit;

exec dbms_stats.gather_table_stats(user, 'phone_call');

Listing 11-20 shows a script to create a table with a static list of phone

codes for the United Kingdom. You can download this list using http://

www.area-codes.org.uk/uk-area-codes.xlsx and import it manually if

you do not have permission to get it via httpuritype in Oracle.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

http://www.area-codes.org.uk/uk-area-codes.xlsx
http://www.area-codes.org.uk/uk-area-codes.xlsx

289

Listing 11-20. Table containing a list of phone codes

create table phone_code as

with tbl as

 (select regexp_substr(httpuritype('http://www.area-codes.org.

uk/full-uk-area-code-list.php')

 .getclob(),

 '<table class="info">.*?</table>',

 1,

 1,

 'n') c

 from dual)

select *

 from xmltable('/table/tr' passing xmltype((select c from tbl))

 columns

 code varchar2(6) path '/tr/td[1]',

 area varchar2(50) path '/tr/td[2]')

 order by 1;

exec dbms_stats.gather_table_stats(user, 'phone_call');

The goal is to calculate the total duration for each code.

There are some specifics in pre-generated data:

 1) For simplicity, phone numbers start with 01, but in

reality the two first digits can be 01, 02, 03, 05, 07, 08,

and 09.

 2) Some phone numbers are incorrect, because codes

for them do not exist: for example, 0119. This is

a side effect of generation and such calls will be

excluded from the result.

 3) Numbers are not unique, which can be easily

checked with the query below.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

290

select count(*) cnt_all, count(distinct num)

cnt_dist from phone_call;

 CNT_ALL CNT_DIST

---------- ----------

 1000000 999490

Speaking about phone codes, one code may be a prefix for another. In

such cases, the longest code that is a prefix for the phone number is the

actual code.

select *

 from phone_code pc1

 join phone_code pc2

 on pc2.code like pc1.code || '%'

 and pc2.code <> pc1.code

 order by 1, 3;

CODE AREA CODE AREA

------ --------------------------- ------ --------------------

01387 Dumfries 013873 Langholm

01524 Lancaster 015242 Hornby

01539 Kendal 015394 Hawkshead

01539 Kendal 015395 Grange-Over- Sands

01539 Kendal 015396 Sedbergh

01697 Brampton (6 figure numbers) 016973 Wigton

01697 Brampton (6 figure numbers) 016974 Raughton Head

01697 Brampton (6 figure numbers) 016977 Brampton (4 and 5

figure numbers)

01768 Penrith 017683 Appleby

01768 Penrith 017684 Pooley Bridge

01768 Penrith 017687 Keswick

01946 Whitehaven 019467 Gosforth

12 rows selected.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

291

The possible length of the prefixes starting with 01 is 4, 5, and 6 digits.

select length(code) l, count(*) cnt

 from phone_code

 where code like '01%'

 group by length(code)

 order by 1;

 L CNT

---------- ----------

 4 12

 5 582

 6 12

For other countries, the range of code lengths may be much wider and the

number of cases when one code is a prefix for another may be much greater.

A straightforward solution is below:

select code, sum(duration) s

 from (select ca.rowid,

 num,

 duration,

 max(code)

 keep(dense_rank first order by length(code)

desc) code

 from phone_call ca

 left join phone_code co

 on ca.num like co.code || '%'

 group by ca.rowid, num, duration)

 where code is not null

 group by code

 order by code;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

292

To minimize output and fetching, we will be using an aggregate

function on top of inline view for performance testing.

select sum(code * sum(duration)) s, count(*) cnt

 from (select ca.rowid,

 num,

 duration,

 max(code)

 keep(dense_rank first order by length(code)

desc) code

 from phone_call ca

 join phone_code co

 on ca.num like co.code || '%'

 group by ca.rowid, num, duration)

 group by code;

 S CNT

---------- ----------

2884843733 606

select * from table(dbms_xplan.display_cursor(null,null,

'IOSTATS LAST'));

Chapter 11 When pL/SQL IS Better than VanILLa SQL

293

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|
 I
d
|
Op

er
at
io
n

|
Na

me

 |
 S
ta
rt
s
|E
-R
ow
s
 |
 A
-R
ow
s
 |

 A
-T
im
e

 |
 B
uf
fe
rs

|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

|

0
|
SE

LE
CT
 S
TA
TE
ME
NT

|

 |

1
|

 |

1
 |
 0
0:
01
:0
8.
44
 |

16
96
K
|

|

1
|
 S
OR
T
AG
GR
EG
AT
E

|

 |

1
|

1
 |

1
 |
 0
0:
01
:0
8.
44
 |

16
96
K
|

|

2
|

HA
SH
 G
RO
UP
 B
Y

|

 |

1
|

1
 |

60
6
 |
 0
0:
01
:0
8.
44
 |

16
96
K
|

|

3
|

 V
IE
W

|

 |

1
|
 2
00
0K
 |

70
1K
 |
 0
0:
01
:0
8.
23
 |

16
96
K
|

|

4
|

SO
RT
 G
RO
UP
 B
Y

|

 |

1
|
 2
00
0K
 |

70
1K
 |
 0
0:
01
:0
8.
06
 |

16
96
K
|

|

5
|

 N
ES
TE
D
LO
OP
S

|

 |

1
|
 2
00
0K
 |

70
2K
 |
 0
0:
01
:0
4.
81
 |

16
96
K
|

|

6
|

TA
BL
E
AC
CE
SS
 F
UL
L
|
PH

ON
E_
CO
DE
 |

1
|

61
1
 |

61
1
 |
 0
0:
00
:0
0.
01
 |

 4

|

|*

7
|

TA
BL
E
AC
CE
SS
 F
UL
L
|
PH

ON
E_
CA
LL
 |

61
1
|
 3
27
3
 |

70
2K
 |
 0
0:
01
:0
4.
57
 |

16
96
K
|

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

Chapter 11 When pL/SQL IS Better than VanILLa SQL

294

As we see from the plan, temporary tablespace was not used during

execution (there are no Reads/Writes columns) and all the data was read

from memory. The only possible join method is NESTED LOOPS because

of a predicate containing the like operator. In fact, most of the time was

spent on doing NESTED LOOPS, and further grouping and ordering added

just 3 seconds.

To get a table cached in memory you may want to disable direct path

reads – “alter session set events '10949 trace name context

forever, level 1';”.

Given that we know a possible range of code lengths in advance, we

can use this fact to achieve a HASH JOIN method with codes if we add an

auxiliary join to get all the prefixes for a given range.

select sum(code * sum(duration)) s, count(*) cnt

 from (select ca.rowid,

 num,

 duration,

 max(code)

 keep(dense_rank first order by length(code)

desc) code

 from phone_call ca

 cross join (select rownum + 3 idx

 from dual connect by rownum <= 3) x

 join phone_code co

 on substr(ca.num, 1, x.idx) = co.code

 group by ca.rowid, num, duration)

 group by code;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

295

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

|
 I
d
 |
 O
pe
ra
ti
on

|
Na
me

 |
 S
ta
rt
s
|
E-
Ro
ws

|
A-
Ro
ws

|

A-
Ti
me

|
Bu
ff
er
s
|

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

|

0
|
SE
LE
CT
 S
TA
TE
ME
NT

|

 |

1
|

|

 1

|
00
:0
0:
04
.8
6
|

 2
78
1
|

|

1
|
 S
OR
T
AG
GR
EG
AT
E

|

 |

1
|

 1

|

 1

|
00
:0
0:
04
.8
6
|

 2
78
1
|

|

2
|

HA
SH
 G
RO
UP
 B
Y

|

 |

1
|

 1

|

 6
06

|
00
:0
0:
04
.8
6
|

 2
78
1
|

|

3
|

 V
IE
W

|

 |

1
|

10
00
K
|

 7
01
K
|
00
:0
0:
04
.6
5
|

 2
78
1
|

|

4
|

SO
RT
 G
RO
UP
 B
Y

|

 |

1
|

10
00
K
|

 7
01
K
|
00
:0
0:
04
.4
7
|

 2
78
1
|

|*

5
|

 H
AS
H
JO
IN

|

 |

1
|

10
00
K
|

 7
02
K
|
00
:0
0:
03
.3
4
|

 2
78
1
|

|

6
|

TA
BL
E
AC
CE
SS
 F
UL
L

|
PH
ON
E_
CO
DE
 |

1
|

 6
11

|

 6
11

|
00
:0
0:
00
.0
1
|

4
|

|

7
|

ME
RG
E
JO
IN
 C
AR
TE
SI
AN

|

 |

1
|

10
00
K
|

30
00
K
|
00
:0
0:
01
.4
4
|

 2
77
7
|

|

8
|

 V
IE
W

|

 |

1
|

 1

|

 3

|
00
:0
0:
00
.0
1
|

0
|

|

9
|

CO
UN
T

|

 |

1
|

|

 3

|
00
:0
0:
00
.0
1
|

0
|

|
 1
0
|

 C
ON
NE
CT
 B
Y
WI
TH
OU
T
FI
LT
ER
IN
G
|

 |

1
|

|

 3

|
00
:0
0:
00
.0
1
|

0
|

|
 1
1
|

FA
ST
 D
UA
L

|

 |

1
|

 1

|

 1

|
00
:0
0:
00
.0
1
|

0
|

|
 1
2
|

 B
UF
FE
R
SO
RT

|

 |

3
|

10
00
K
|

30
00
K
|
00
:0
0:
00
.7
9
|

 2
77
7
|

|
 1
3
|

TA
BL
E
AC
CE
SS
 F
UL
L

|
PH
ON
E_
CA
LL
 |

1
|

10
00
K
|

10
00
K
|
00
:0
0:
00
.0
5
|

 2
77
7
|

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

Chapter 11 When pL/SQL IS Better than VanILLa SQL

296

The performance considerably improved after this modification and

execution time dropped from 68 to 5 seconds – more than 10 times faster!

So cross joins generate three rows for each number to extract the

prefix of the corresponding length, and after that we join with phone

codes and take the longest prefix for each number. We may note that if

join was successful for a code with 6 digits, then there is no reason to join

with shorter codes for the current number. Ideally it would be nice to join

with an ordered set until the first match but this is not possible in SQL. On

the other hand, we can avoid any joins by using the PL/SQL function and

associative array for look-up.

create or replace package phone_pkg is

 type tp_phone_code is table of int index by varchar2(6);

 g_phone_code tp_phone_code;

 function get_code(p_num in varchar2) return varchar2

deterministic;

end phone_pkg;

/

create or replace package body phone_pkg is

 function get_code(p_num in varchar2) return varchar2

deterministic is

 l_num varchar2(6);

 begin

 l_num := substr(p_num, 1, 6);

 while (l_num is not null) and (not g_phone_code.exists(l_

num)) loop

 l_num := substr(l_num, 1, length(l_num) - 1);

 end loop;

 return l_num;

 end;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

297

begin

 for cur in (select * from phone_code) loop

 g_phone_code(cur.code) := 1;

 end loop;

end phone_pkg;

/

select sum(code * sum(duration)) s, count(*) cnt

 from (select ca.rowid, num, duration, phone_pkg.get_code(num)

code

 from phone_call ca

 group by ca.rowid, num, duration)

 group by code;

 S CNT

---------- ----------

2884843733 607

Chapter 11 When pL/SQL IS Better than VanILLa SQL

298

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 I
d
|
Op

er
at
io
n

 |
 N
am

e

|
St
ar
ts
 |
 E
-R
ow
s
 |
 A
-R
ow
s
 |

 A
-T
im
e

 |
 B
uf
fe
rs
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|

0
|
SE

LE
CT
 S
TA
TE
ME
NT

 |

|

 1
 |

 |

1
 |
 0
0:
00
:0
6.
34
 |

27
77
 |

|

1
|
 S
OR
T
AG
GR
EG
AT
E

 |

|

 1
 |

1
 |

1
 |
 0
0:
00
:0
6.
34
 |

27
77
 |

|

2
|

HA
SH
 G
RO
UP
 B
Y

 |

|

 1
 |

1
 |

60
7
 |
 0
0:
00
:0
6.
34
 |

27
77
 |

|

3
|

 V
IE
W

 |
 V
M_

NW
VW
_0

|

 1
 |

 1
00
0K
 |

 1
00
0K
 |
 0
0:
00
:0
5.
71
 |

27
77
 |

|

4
|

HA
SH
 G
RO
UP
 B
Y

 |

|

 1
 |

 1
00
0K
 |

 1
00
0K
 |
 0
0:
00
:0
0.
92
 |

27
77
 |

|

5
|

 T
AB
LE
 A
CC
ES
S
FU
LL
 |
 P
HO

NE
_C
AL
L
|

 1
 |

 1
00
0K
 |

 1
00
0K
 |
 0
0:
00
:0
0.
06
 |

27
77
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

A
s

yo
u

 s
ee

, p
er

fo
rm

an
ce

 is
 a

 b
it

 w
or

se
 th

an
 th

at
 fo

r
an

 S
Q

L
ap

p
ro

ac
h

 w
it

h
 H

A
SH

 JO
IN

, b
u

t i
f w

e
ad

d

«p
ra
gm
a
ud
f»

, t
h

en
 th

e
P

L/
SQ

L
ap

p
ro

ac
h

 w
ill

 b
e

fa
st

er
.

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|
 I
d
|
Op

er
at
io
n

 |
 N
am

e

|
St
ar
ts
 |
 E
-R
ow
s
 |
 A
-R
ow
s
 |

 A
-T
im
e

 |
 B
uf
fe
rs
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

|

0
|
SE

LE
CT
 S
TA
TE
ME
NT

 |

|

 1
 |

 |

1
 |
 0
0:
00
:0
3.
50
 |

27
77
 |

|

1
|
 S
OR
T
AG
GR
EG
AT
E

 |

|

 1
 |

1
 |

1
 |
 0
0:
00
:0
3.
50
 |

27
77
 |

|

2
|

HA
SH
 G
RO
UP
 B
Y

 |

|

 1
 |

1
 |

60
7
 |
 0
0:
00
:0
3.
50
 |

27
77
 |

|

3
|

 V
IE
W

 |
 V
M_

NW
VW
_0

|

 1
 |

 1
00
0K
 |

 1
00
0K
 |
 0
0:
00
:0
3.
03
 |

27
77
 |

|

4
|

HA
SH
 G
RO
UP
 B
Y

 |

|

 1
 |

 1
00
0K
 |

 1
00
0K
 |
 0
0:
00
:0
0.
85
 |

27
77
 |

|

5
|

 T
AB
LE
 A
CC
ES
S
FU
LL
 |
 P
HO

NE
_C
AL
L
|

 1
 |

 1
00
0K
 |

 1
00
0K
 |
 0
0:
00
:0
0.
05
 |

27
77
 |

--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Chapter 11 When pL/SQL IS Better than VanILLa SQL

299

Further improvement is possible if we make the function deterministic

and pass only the first 6 digits of the number as an argument. But with an

increasing number and complexity of codes, the PL/SQL approach will be

more and more preferable against SQL.

 Limitations of the Subqueries
As it was already mentioned in the first chapter, any query that requires

joining two and more recordsets may be implemented using explicit

joins with a join keyword. However, in some cases subqueries may be

preferable – for example, if we need to derive some attribute according

to complex logic, we can use scalar subqueries to leverage scalar

subquery caching and to avoid aggregate or analytic functions and other

complexities in the main query. Subqueries in the where clause also may

be more preferable than explicit joins – for instance, when ANTI or SEMI

joins are required, please refer to the quiz “Top Paths” in Chapter 12 for a

specific example (it does not require multiple nesting levels though).

Sometimes it’s not possible to implement complex logic with multiple

layers in correlated subquery because of nesting level limitation. These

limitations are not well documented but easy to demonstrate.

select t1.*,

 (select *

 from (select t2.name

 from t2 where t2.id = t1.id order by t2.name) t

 where rownum = 1) scalar

 from t1;

 ID N S

---------- - -

 0 X X

 1 A

Chapter 11 When pL/SQL IS Better than VanILLa SQL

300

select t1.*

 from t1

 where exists

 (select 1

 from t2

 where t2.id = t1.id

 and t2.id =

 (select id

 from (select id from t3 where t3.id = t1.id

order by 1)

 where rownum = 1));

 ID N

---------- -

 0 X

Queries work fine in Oracle 12c but fail on 11g with «ORA-00904:

"D1"."DUMMY": invalid identifier»; in Oracle 12c you still may face

ORA-00904 for more complex subqueries.

You can implement logic from a subquery in UDF as a workaround

when the identifier from the main query is not visible in the subquery. In

addition, Oracle 12c provides «pragma udf», which provides additional

performance improvement when UDF is called in SQL.

If we have a look at final queries after transformations, we may notice

an artificial bind variable introduced instead of a column from the main

query.

select "T1"."ID" "ID",

 "T1"."NAME" "NAME",

 (select "T"."NAME" "NAME"

 from (select "T2"."NAME" "NAME"

 from "T2" "T2"

 where "T2"."ID" = :b1

Chapter 11 When pL/SQL IS Better than VanILLa SQL

301

 order by "T2"."NAME") "T"

 where rownum = 1) "SCALAR"

 from "T1" "T1"

select "T1"."ID" "ID", "T1"."NAME" "NAME"

 from "T1" "T1"

 where exists (select 0

 from "T2" "T2"

 where "T2"."ID" = "T1"."ID"

 and "T2"."ID" = (select "from$_subquery$_003"."ID" "ID"

 from (select "T3"."ID" "ID"

 from "T3" "T3"

 where "T3"."ID" = :b1

 order by "T3"."ID")

 "from$_subquery$_003"

 where rownum = 1))

The key difference between implementation logic in the UDF and in

the subquery is that UDF returns data as of the time of the current call

while the subquery returns data as of the time of query start.

To demonstrate the difference, let’s create a table and function that

takes around 5 seconds to execute.

create table t_scn(id, name) as

select 1, 'A' from dual

union all select 2, 'B' from dual

union all select 3, 'C' from dual;

create or replace function f_get_name(p_id in int) return

varchar2 is

begin

 dbms_lock.sleep(5);

 for i in (select * from t_scn where id = p_id) loop

 return(i.name);

Chapter 11 When pL/SQL IS Better than VanILLa SQL

302

 end loop;

end f_get_name;

/

While the query below is running

select t_main.*,

 (select name from t_scn where id = t_main.id) name1,

 f_get_name(t_main.id) name2

 from t_scn t_main;

Let’s update the row in the concurrent session

update t_scn set name = 'X' where id = 3;

commit;

Result in main session is the following:

select t_main.*,

 (select name from t_scn where id = t_main.id) name1,

 f_get_name(t_main.id) name2

 from t_scn t_main;

 ID NAME NAME1 NAME2

---------- ----- ----- -----

 1 A A A

 2 B B B

 3 C C X

This means that changes in a concurrent session during query

execution have been picked up by the function. To avoid this we need to

create an operator.

create operator op_get_name binding (int) return varchar2 using

f_get_name;

Chapter 11 When pL/SQL IS Better than VanILLa SQL

303

After repeating the test we see that the operator guarantees the same

consistency as the subquery does.

select t_main.*,

 (select name from t_scn where id = t_main.id) name1,

 f_get_name(t_main.id) name2,

 op_get_name(t_main.id) name3

 from t_scn t_main;

 ID NAME NAME1 NAME2 NAME3

---------- ----- ----- ----- -----

 1 A A A A

 2 B B B B

 3 C C X C

 Summary
If a recordset can be achieved using vanilla SQL, then this is the fastest way

to get a result in the absolute majority of cases. However, for some specific

tasks, PL/SQL may be more preferable, which was demonstrated based on

examples divided into the following categories:

• Specifics of analytic functions;

• Iterative-like computations;

• Specifics of joins and subqueries.

It’s important to note that technically one of the below approaches was

used in each PL/SQL solution:

• Cursor for loop with processing in PL/SQL;

• Encapsulation in UDF and its usage in a query;

• Iterative execution of SQL statements.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

304

I want to emphasize one more time, then, that the size of the fetch is

very important in case of a cursor for loop processing.

In some cases, advanced SQL features like recursive subquery

factoring help to efficiently get the result using SQL, which otherwise

would require PL/SQL. The next chapter contains a series of tasks and

their solutions using advanced SQL features as well as a performance

comparison of different approaches.

Chapter 11 When pL/SQL IS Better than VanILLa SQL

305© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_12

CHAPTER 12

Solving SQL Quizzes
In this last chapter I’d like to consider specific real-life tasks and their

solutions in SQL to demonstrate the power of Oracle SQL. The complexity

of the tasks will vary a lot as well as the depth of analysis for different

solutions. For a few tasks there will be both SQL and PL/SQL solutions, but

the main accent in this chapter is on SQL capabilities.

For the sake of simplicity I tried to eliminate all the unnecessary details

and make the problem formulations as simple as possible.

 Converting into Decimal Numeral System
We have a string of symbols in some alphabet, and the goal is to convert

it into decimal. The first symbol in the alphabet is zero, the value for the

second symbol is one, and the value for the third symbol is two, and so on.

 Solution
Let’s start with the case when the alphabet is hexadecimal. In such a

situation we can use the function to_number with the corresponding

format model as shown in Listing 12-1.

306

Listing 12-1. Converting hexadecimal value into decimal

var x varchar2(30)

var alphabet varchar2(30)

exec :alphabet := '0123456789ABCDEF';

PL/SQL procedure successfully completed.

exec :x := '1A0A';

PL/SQL procedure successfully completed.

select to_number(:x, 'XXXX') num from dual;

 NUM

 6666

Listing 12-2 shows the SQL approach to convert a string from an

arbitrary alphabet.

Listing 12-2. Converting string in arbitrary alphabet into decimal

in SQL

select sum(power(base, level - 1) *

 (instr(:alphabet, substr(:x, -level, 1)) - 1)) num

 from (select length(:alphabet) base from dual)

connect by level <= length(:x);

 NUM

 6666

Similar logic can be implemented in PL/SQL as shown in Listing 12-3.

Chapter 12 Solving SQl QuizzeS

307

Listing 12-3. Converting from arbitrary alphabet into decimal in

PL/SQL

create or replace function f_10base(p_x in varchar,

 p_alphabet in varchar

 default '0123456789ABCDEF')

 return number is

 result number := 0;

 l_base int := length(p_alphabet);

begin

 for i in 1 .. length(p_x) loop

 result := result + power(l_base, i - 1) *

 (instr(p_alphabet, substr(p_x, -i, 1)) - 1);

 end loop;

 return result;

end f_10base;

Let’s compare the performance of the two approaches.

select sum(f_10base('ABC' || rownum)) f from dual connect by

level <= 1e6;

 F

4.1760E+16

Elapsed: 00:00:16.61

select sum(num) f

 from (select (select sum(power(base, level - 1) *

 (instr(:alphabet, substr(x,

-level, 1)) - 1)) num

 from (select length(:alphabet) base from dual)

 connect by level <= length(x)) num

Chapter 12 Solving SQl QuizzeS

308

 from (select 'ABC' || rownum x from dual connect by

level <= 1e6));

 F

4.1760E+16

Elapsed: 00:00:25.53

As you see, the PL/SQL solution is faster; nevertheless the context

switches. You can use dbms_hprof and dbms_xplan with runtime

execution statistics to check in more detail where the time is spent for the

PL/SQL and SQL approach correspondingly.

To complete the picture let’s measure timing for a built-in function.

select sum(to_number('ABC' || rownum, lpad('X', 10, 'X'))) f

 from dual

connect by level <= 1e6;

 F

4.1760E+16

Elapsed: 00:00:01.11

The performance of an external C function would be approximately the

same as for a built-in function. This task demonstrates that in some cases

neither SQL nor PL/SQL is the best approach if performance is critical.

 Connected Components
Graph theory is a huge subject with a number of terms, list of typical tasks,

and various ways of representing the graphs. RDBMSs are not the best tool

to work with generic graphs but SQL may be very efficient in working with

specific classes of graphs known as hierarchies.

Chapter 12 Solving SQl QuizzeS

309

In real life you may face tasks with various types of graphs, and it’s

quite important to understand how this challenge can be approached, so

this and the next quiz are a quick touch on the subject.

In the current task let’s consider an undirected graph that is

represented as a list of edges and shown on Figure 12-1.

create table edge(x1, x2) as

select 10,20 from dual

union all select 50,40 from dual

union all select 20,30 from dual

union all select 20,40 from dual

union all select 60,70 from dual

union all select 80,60 from dual

union all select 20,90 from dual;

Figure 12-1. Connected components

Chapter 12 Solving SQl QuizzeS

310

The goal is to number the connected components. The result for the

data above is this:

 X GRP

---------- ----------

 10 1

 20 1

 30 1

 40 1

 50 1

 60 2

 70 2

 80 2

 90 1

9 rows selected.

So each node belongs to one of the two connected components in this

example, and it’s not critical which one is first and which one is second.

 Solution
Listing 12-4 shows an SQL approach to number connected components.

Listing 12-4. Numbering connected components in SQL

select x, dense_rank() over(order by min(root)) grp

 from (select connect_by_root x1 root, x1, x2

 from edge

 connect by nocycle prior x1 in (x1, x2)

 or prior x2 in (x1, x2))

 unpivot(x for x12 in(x1, x2))

 group by x

 order by 1, 2;

Chapter 12 Solving SQl QuizzeS

311

Given that the graph is undirected, edge X1 – X2 means that nodes

may be traversed from X1 to X2 and the other way around; thus all the

combinations of parent–child relations have been specified in the connect

by condition to handle this.

Please pay attention that there is no start with clause, so for each edge

we are building all connected edges and then use pivot to return all the

connected nodes in column X. Finally, for each node we derive a minimal

root (which is defined as the starting value for X1 but similarly it may be

the starting value for X2) and number the connected components using

dense_rank.

The query looks quite concise but in fact it’s very inefficient because

the same edges are traversed multiple times, but this is the only way to

consider all possible connections.

The PL/SQL approach, however, may be very efficient and it’s

demonstrated in Listing 12-5. The required result can be achieved with a

single table scan and fast look-ups in associative arrays.

Listing 12-5. Numbering connected components in PL/SQL

create or replace type to_2int as object (x int, grp int)

/

create or replace type tt_2int as table of to_2int

/

create or replace function f_connected_component return tt_2int

 pipelined is

 i_list number := 0;

 i number;

 n number;

 k number;

 type tp1 is table of binary_integer index by binary_integer;

 type tp2 is table of tp1 index by binary_integer;

 t1 tp1;

 t2 tp2;

Chapter 12 Solving SQl QuizzeS

312

begin

 for c in (select x1, x2 from edge) loop

 if not t1.exists(c.x1) and not t1.exists(c.x2) then

 i_list := i_list + 1;

 t1(c.x1) := i_list;

 t1(c.x2) := i_list;

 t2(i_list)(c.x1) := null;

 t2(i_list)(c.x2) := null;

 elsif t1.exists(c.x1) and not t1.exists(c.x2) then

 t1(c.x2) := t1(c.x1);

 t2(t1(c.x1))(c.x2) := null;

 elsif t1.exists(c.x2) and not t1.exists(c.x1) then

 t1(c.x1) := t1(c.x2);

 t2(t1(c.x2))(c.x1) := null;

 elsif t1.exists(c.x1) and t1.exists(c.x2) and t1(c.x1) <>

t1(c.x2) then

 n := greatest(t1(c.x1), t1(c.x2));

 k := least(t1(c.x1), t1(c.x2));

 i := t2(n).first;

 while (i is not null) loop

 t2(k)(i) := null;

 t1(i) := k;

 i := t2(n).next(i);

 end loop;

 t2.delete(n);

 end if;

 end loop;

 i := t1.first;

 for idx in 1 .. t1.count loop

Chapter 12 Solving SQl QuizzeS

313

 pipe row(to_2int(i, t1(i)));

 i := t1.next(i);

 end loop;

end;

The T1 array contains an index of a connected component for each

node. The T2 array is the list of components where a component is an

array of nodes. In fact, t2 was introduced for performance reasons, because

if nodes for some edges belong to different components, then we need to

re-renumber nodes for one of the components, and a list of nodes for each

component makes this operation very fast.

select x, dense_rank() over(order by grp) grp

 from table(f_connected_component)

 order by x;

The efficiency of two approaches in non-comparable and, frankly

speaking, SQL approach for this task is not reasonable at all. You can use

the approach below to generate unique edges:

exec dbms_random.seed(11);

create table edge as

select trunc(dbms_random.value(1, 100)) x1,

 trunc(dbms_random.value(1, 100)) x2

 from dual

connect by level <= 61;

select count(distinct least(x1, x2) || ' ' || greatest(x1, x2))

from edge;

The PL/SQL approach takes a couple of milliseconds while an SQL

query takes more than 3 minutes to execute on my laptop. If you add a few

more elements, PL/SQL execution time still will be milliseconds while an

SQL approach will take hours.

Chapter 12 Solving SQl QuizzeS

314

It’s important to note though that if the goal is to return a connected

component for a specific node instead of all connected components, then

a full table scan may not be the optimal approach if nodes are indexed. In

this case a combined SQL and PL/SQL approach to traverse the graph using

a breadth-first search may be the best solution. This is not implementable

in pure SQL even with recursive subquery factoring because traversing a

graph requires maintaining a single list of visited nodes.

 Ordering Dependencies
In this task we will implement an algorithm on a directed acyclic graph –

DAG. The main difference between DAGs and hierarchies is that each

hierarchy node has one parent while there may be multiple parents and

children for some nodes in a DAG. This may result in various routes from

one node to another in DAG. SQL can be used to traverse directed graphs

in much more efficient way than undirected ones and the connect by

condition looks the same as for hierarchies, but the issue with multiple

possible paths between nodes may cause inefficiency.

A script from Listing 12-6 creates a table where each row represents a

dependency between two objects. There are no cycle dependencies but

several objects may depend on one specific object, as well as one object

may reference a number of other objects. Obviously such data is DAG and

not a hierarchy. Graphically it’s shown on Figure 12-2, but please note that

edges are represented as arrows because the graph is directed.

Listing 12-6. Creating table describing dependencies

create table d(name, referenced_name) as

(select null, 'o' from dual

union all select 'o', 'a' from dual

union all select 'o', 'd' from dual

union all select 'a', 'b' from dual

Chapter 12 Solving SQl QuizzeS

315

union all select 'd', 'b' from dual

union all select 'b', 'e' from dual

union all select 'b', 'c' from dual

union all select 'e', 'c' from dual

union all select 'c', 'x' from dual

union all select 'c', 'y' from dual

union all select 'c', 'z' from dual

);

Figure 12-2. Directed acyclic graph

Chapter 12 Solving SQl QuizzeS

316

The goal is to number dependencies starting with independent

objects. So independent objects represent the first level, objects that

depend on independent objects and do not have unvisited dependencies

represent the second level, and so on.

 Solution
Listing 12-7 shows a straightforward approach to order dependencies.

Listing 12-7. Ordering dependencies in SQL

select referenced_name, max(level) ord, count(*) cnt

 from d

 start with not exists

 (select 1 from d d_in where d_in.name = d.referenced_name)

connect by prior name = referenced_name

 group by referenced_name

 order by 2, 1;

R ORD CNT

- ---------- ----------

x 1 1

y 1 1

z 1 1

c 2 6

e 3 3

b 4 12

a 5 6

d 5 6

o 6 12

9 rows selected.

Chapter 12 Solving SQl QuizzeS

317

So x, y, and z represent the first level. The second level contains only

node c. Both b and e reference c but b also references e, so e must go

before b and this is the only node on the third level. Node b represents the

fourth level and so on.

You may notice that there is no «nocycle» keyword because there are

no cycles according to requirements. This approach is not quite efficient

because it builds all possible routes from independent nodes (we cannot

call them leaves because our data is DAG and not a tree) and visits the

same nodes multiple times. For example, there are 6 routes to node

b: x->c->b, y->c->b, z->c->b, x->c->e->b, y->c-> e->b, z->c-> e->b so it visits

two children from b six times each so b appears 12 times in the result set.

On the other hand we can use a breadth-first search algorithm for

traversing graphs, but this requires maintaining a list of visited nodes,

which is not doable using pure SQL.

Listing 12-8 shows PL/SQL implementation using a pipelined function.

We maintain a list of visited nodes in the result collection and use the

current collection to refer nodes added on a previous iteration.

Listing 12-8. Ordering dependencies in PL/SQL

create or replace type to_node as object (name varchar2(30),

lvl number)

/

create or replace type tt_node as table of to_node

/

create or replace function f_traverse return tt_node is

 result tt_node;

 current tt_node;

 tmp tt_node;

 lvl int := 1;

begin

Chapter 12 Solving SQl QuizzeS

318

 select to_node(referenced_name, lvl) bulk collect

 into current

 from (select distinct referenced_name

 from d

 where not exists

 (select null from d d_in where d_in.name =

d.referenced_name));

 result := current;

 while true loop

 lvl := lvl + 1;

 select to_node(name, lvl) bulk collect

 into tmp

 from (select distinct d1.name

 from d d1

 join table(current) cur

 on d1.referenced_name = cur.name

 -- add only nodes without unvisited children

 where not exists (select null

 from d d2

 left join table(result) r

 on d2.referenced_name = r.name

 where d1.name = d2.name

 and r.name is null));

 if tmp.count = 0 then

 return result;

 else

 result := result multiset union all tmp;

 current := tmp;

 end if;

 end loop;

end f_traverse;

Chapter 12 Solving SQl QuizzeS

319

This algorithm returns nodes on all levels including the last one, unlike

the demonstrated SQL approach.

select * from table(f_traverse) order by 2, 1;

NAME LVL

----- ----------

x 1

y 1

z 1

c 2

e 3

b 4

a 5

d 5

o 6

 7

10 rows selected.

Performance may be further improved by creating indexes on the

name and referenced_name and using a temporary table with an index to

maintain a list of visited nodes. An SQL approach may be acceptable for

relatively simple DAGs, but if there are complex dependencies, then PL/SQL

will perform better. For instance, for the data below the PL/SQL approach

will be 100 times faster but in fact there is only one DAG with just 65 nodes.

create table d as

select decode(type, 'to', 'x' || to_char(x + 1), 'n' || x || y)

name,

 decode(type, 'to', 'n' || x || y, 'x' || x)

referenced_name

 from (select to_char(trunc((rownum - 1) / 7) + 1) x,

 to_char(mod(rownum, 7) + 1) y

 from dual

Chapter 12 Solving SQl QuizzeS

320

 connect by level <= 8 * 7) n,

 (select 'from' type

 from dual

 union all

 select 'to' from dual);

 Percentile with Shift
Let’s move on to quizzes with analytic functions.

The goal sounds simple: for each row, calculate a percentile for fixed

value taking into account rows from the current row to n following.

A detailed explanation on how to calculate percentile can be found in

Oracle documentation for percentile_cont function (also you can use Excel

function - PERCENTILE).

For x = 0.3 and n = 4 the result is as follows:

Order Value Percentile

1 10 64

2 333 95.5

3 100 82

4 55 338.5

5 1000 1000

 Solution
It’s not possible to specify a windowing clause when using percentile_cont

as an analytic function so it’s applied to the entire partition. Given that we

need to calculate percentile for a specific subset of rows starting with the

current row, we can get the required subset using a self join and use an

aggregate version of percentile_cont. See Listing 12-9.

Chapter 12 Solving SQl QuizzeS

321

Listing 12-9. Calculating percentile with shift using self join and

percentile_cont

create table flow(ord, value) as

select 1, 10 from dual

union all select 2, 333 from dual

union all select 3, 100 from dual

union all select 4, 55 from dual

union all select 5, 1000 from dual;

select t1.*, percentile_cont(0.3) within group(order by

t2.value) pct

 from flow t1

 join flow t2 on t2.ord between t1.ord and t1.ord + 4

 group by t1.ord, t1.value;

 ORD VALUE PCT

---------- ---------- ----------

 1 10 64

 2 333 95.5

 3 100 82

 4 55 338.5

 5 1000 1000

We can get the same without percentile_cont if we implement

calculations described in the documentation for that function.

See Listing 12-10.

Listing 12-10. Calculating percentile with shift using self join and

analytic functions

select tt.*,

 decode(frn, crn, frn_value,

 (crn - rn) * frn_value + (rn - frn) * crn_value)

percentile

Chapter 12 Solving SQl QuizzeS

322

 from (select t.ord,

 t.value,

 t.rn,

 t.frn,

 t.crn,

 max(decode(rnum, frn, v)) frn_value,

 max(decode(rnum, crn, v)) crn_value

 from (select t1.*,

 t2.value v,

 row_number() over(partition by t1.ord

order by t2.value) rnum,

 1 + 0.3 * (count(*) over(partition by

t1.ord) - 1) rn,

 floor(1 + 0.3 * (count(*) over(partition

by t1.ord) - 1)) frn,

 ceil(1 + 0.3 * (count(*) over(partition

by t1.ord) - 1)) crn

 from flow t1

 join flow t2

 on t2.ord between t1.ord and t1.ord + 4) t

 group by t.ord, t.value, t.rn, t.frn, t.crn) tt

 order by tt.ord;

 ORD VALUE RN FRN CRN FRN_VALUE CRN_VALUE PERCENTILE

------- ------ ---- ---- ---- ---------- ---------- ----------

 1 10 2.2 2 3 55 100 64

 2 333 1.9 1 2 55 100 95.5

 3 100 1.6 1 2 55 100 82

 4 55 1.3 1 2 55 1000 338.5

 5 1000 1 1 1 1000 1000 1000

Chapter 12 Solving SQl QuizzeS

323

So we calculate frn and crn indexes for each subset, derive

corresponding values, and perform linear interpolation when necessary.

But do we really need self join?

Let’s consider the solution when values are ordered in a source table.

The result of the Listing 12-11 differs from the two previous queries

because values are ordered by ord.

Listing 12-11. Calculating percentile with shift using analytic

functions only

select ttt.*,

 decode(frn, crn, frn_value, (crn - rn) * frn_value +

(rn - frn) * crn_value) percentile

 from (select tt.*,

 nth_value(value, ord + frn - 1)

 over(order by ord range between unbounded

preceding and unbounded following) frn_v,

 nth_value(value, ord + crn - 1)

 over(order by ord range between unbounded

preceding and unbounded following) crn_v,

 last_value(value)

 over(order by ord range between frn - 1

following and frn - 1 following) frn_value,

 last_value(value)

 over(order by ord range between crn - 1

following and crn - 1 following) crn_value

 from (select t.*, floor(rn) frn, ceil(rn) crn

 from (select t0.*,

 1 +

 0.3 * (count(*)

Chapter 12 Solving SQl QuizzeS

324

 over(order by ord range

between current row and 4

following) - 1) rn

 from flow t0) t) tt) ttt;

 ORD VALUE RN FRN CRN FRN_V CRN_V FRN_VALUE CRN_VALUE PERCENTILE

----- ------ ---- ----- ----- ------- ------ ---------- ---------- ----------

 1 10 2,2 2 3 55 100 55 100 64

 2 55 1,9 1 2 55 100 55 100 95,5

 3 100 1,6 1 2 55 100 100 333 239,8

 4 333 1,3 1 2 55 100 333 1000 533,1

 5 1000 1 1 1 55 100 1000 1000 1000

Corresponding values for crn and frn indexes for each row have been

derived in two completely different ways – nth_value/last_value. Moreover,

the function nth_value (crn_v and frn_v columns) returns an incorrect

result for Oracle 11g if its second parameter is not a constant (this bug has

been fixed in 12c).

We can run a query from Listing 12-9 and get the same result, but, as it

was already mentioned, this approach works only if the value ordered by

ord. If that is not true, then calculating indexes crn and frn is not a problem

at all, but deriving correspondent values is not possible with analytic

functions – for each row we need to order its own subset of values (this

logic is implemented in Listing 12-10 as «row_number() over(partition

by t1.ord order by t2.value) rnum»).

Chapter 12 Solving SQl QuizzeS

325

 N Consequent 1s
For the table below the goal is to find the number of sequences with 10

consequent 1s ordered by id. If there is, say, 11 consequent 11s, this means

two sequences: from the 1st to 10th and from the 2nd to 11th row.

exec dbms_random.seed(1);

create table t_sign as

select rownum id,

 case when trunc(dbms_random.value(1, 10 + 1)) > 3

 then 1

 else 0

 end sign

 from dual

connect by rownum <= 1e6;

 Solution
There are multiple possible approaches to a solution:

• A few layers of analytic functions

• Analytic function with windowing clause

• Model clause

• Pattern matching

Below you can see the code along with the timings. The following

statements have been executed to avoid temporary tablespace usage and

ensure that there is enough memory for work areas.

alter session set workarea_size_policy = manual;

alter session set sort_area_size = 2147483647;

Chapter 12 Solving SQl QuizzeS

326

Results are the following:

select count(*) cnt

 from (select t.*, sum(sign) over(partition by g order by id) s

 from (select id, sign, sum(x) over(order by id) g

 from (select t0.*,

 decode(nvl(lag(sign) over(order

by id), -1),

 sign,

 0,

 1) x

 from t_sign t0)

 where sign <> 0) t)

 where s >= 10;

 CNT

 28369

Elapsed: 00:00:03.11

select count(*)

 from (select id,

 sum(sign) over(order by id rows between 9

preceding and current row) s

 from t_sign)

 where s = 10;

 COUNT(*)

 28369

Elapsed: 00:00:01.45

Chapter 12 Solving SQl QuizzeS

327

select count(*) cnt from

(

 select *

 from t_sign

 model

 ignore nav

 dimension by (id)

 measures (sign, 0 s)

 rules

 (

 s[any] order by id = decode(sign[cv()], 0, 0, s[cv()-1]+

sign[cv()])

)

)

where s >= 10;

 CNT

 28369

Elapsed: 00:00:04.64

select count(*)

from t_sign

match_recognize

(

 order by id

 one row per match

 after match skip to first one

 pattern (strt one{9})

 define

 strt as strt.sign = 1,

 one as one.sign = 1

) mr;

Chapter 12 Solving SQl QuizzeS

328

 COUNT(*)

 28369

Elapsed: 00:00:01.55

So the fastest approaches are pattern matching and analytics with a

windowing clause, next is a solution with several analytic functions that

requires two sorts and finally the model cause.

 Next Value
For each row from table

exec dbms_random.seed(1);

create table t_value as

select trunc(dbms_random.value(1, 1000 + 1)) value

 from dual

connect by level <= 1e5;

derive the next largest value.

Sample result:

value next_value

1 2

2 3

2 3

3 null

Chapter 12 Solving SQl QuizzeS

329

Solution
It’s not possible to use a lead function given that values may repeat so we

cannot use a fixed shift. However, similar to the previous quiz, there are

multiple approaches to the solution:

• A few layers of analytic functions

• Analytic function with windowing clause

• Model clause

• Pattern matching

Aggregate function «sum(nvl(next_value, 0) - value)» was used to

minimize fetch.

select sum(nvl(next_value, 0) - value) s

 from (select value, max(next_value) over(partition by value)

next_value

 from (select value,

 decode(lead(value, 1) over(order by

value),

 value,

 to_number(null),

 lead(value, 1) over(order by

value)) next_value

 from t_value));

 S

 69907

Elapsed: 00:00:02.33

Chapter 12 Solving SQl QuizzeS

330

select sum(nvl(next_value, 0) - value) s

 from (select value,

 min(value) over(order by value range between 1

following and 1 following) next_value

 from t_value);

 S

 69907

Elapsed: 00:00:01.79

select sum(nvl(next_value, 0) - value) s

from

(

 select value, next_value

 from t_value

 model

 dimension by (row_number () over (order by value desc) rn)

 measures(value, cast(null as number) next_value)

 rules

 (

 next_value[rn > 1] order by rn =

 decode(value[cv()], value[cv()-1], next_value[cv()-1],

value[cv()-1])

)

);

 S

 69907

Elapsed: 00:00:05.94

Chapter 12 Solving SQl QuizzeS

331

select sum(nvl(next_value, 0) - value) s

from (select * from t_value union all select null from dual)

match_recognize

(

 order by value nulls last

 measures

 final first (next_val.value) as next_value

 all rows per match

 after match skip to next_val

 pattern (val+ {-next_val-})

 define

 val as val.value = first(val.value)

) mr;

 S

 69907

Elapsed: 00:00:01.53

The most efficient solutions for this quiz are also pattern matching

and analytics with a windowing clause, then a solution with lead and

max functions and finally a model clause. It’s quite important to use a

minimally required window in a windowing clause. For example, if you

specify “range between 1 following and unbounded following,”

then the result will be correct but the elapsed time will be few orders

of magnitude greater than for “range between 1 following and 1

following.”

One specific row with null values has been added for a pattern

matching solution so that the last row in the original tables has a next row.

Chapter 12 Solving SQl QuizzeS

332

 Next Branch
Let’s define “next branch” as the nearest row after a traversing hierarchy

such as its row number greater than for current row while its level is less or

equal to the current level. This value may be very useful if we want to apply

some logic for all children of a given node.

The goal is to find a solution without joins and subqueries.

This approach with joins is trivial:

with t(id, parent_id, description, amount) as

(

 select 1 id, null, 'top', 10 from dual

 union all select 2, 1, 'top-one', 100 from dual

 union all select 3, 2, 'one-one', 2000 from dual

 union all select 4, 2, 'one-two', 3000 from dual

 union all select 5, 1, 'top-two', 1000 from dual

 union all select 6, 2, 'one-three', 300 from dual

 union all select 7, 6, 'three-one', 1 from dual

)

, h as

(

 select id, parent_id, description, amount, level l, rownum rn

 from t

 start with id = 1

 connect by parent_id = prior id

)

select h.*,

 (select min(rn)

 from h h0

 where h0.rn > h.rn

 and h0.l <= h.l) next_branch

 from h;

Chapter 12 Solving SQl QuizzeS

333

 ID PARENT_ID DESCRIPTI AMOUNT L RN NEXT_BRANCH

------- ---------- --------- ---------- ---- ------ -----------

 1 top 10 1 1

 2 1 top- one 100 2 2 7

 3 2 one- one 2000 3 3 4

 4 2 one- two 3000 3 4 5

 6 2 one- three 300 3 5 7

 7 6 three- one 1 4 6 7

 5 1 top- two 1000 2 7

7 rows selected.

For rows with ID in (3, 4), the next branch is the next row because it

has the same level. For rows with ID in (2, 6, 7), the next branch is row with

RN = 7 because it has a lower level.

 Solution
It may seem that logic can be easily rewritten with analytic functions, but

we face two limitations that have been demonstrated earlier for analytic

functions in the corresponding chapter.

 1) It’s not possible to specify multiple ranges when

ordering by multiple columns. In this particular case

we cannot specify a range for rn

rn range between 1 following and unbounded following

and in the same time range for l

l range between unbounded preceding and current row

 2) If we try to order by only one column whether it’s l or

rn, we have to limit rows by the second column in a

function, but it’s not possible to use the current value

of that attribute in the expression for a function.

Chapter 12 Solving SQl QuizzeS

334

As was already mentioned in the chapter about model clauses, the first

case can be easily implemented using a model clause while the second

case requires iterations and an auxiliary measure to use it as a value of a

given attribute from the current row on each iteration.

Listing 12-12 shows the implementation using the model clause.

Listing 12-12. Finding next branch using model clause

select *

from h

model

dimension by (l, rn)

measures (id, parent_id, rn xrn, 0 next_branch)

rules

(

 next_branch[any, any] order by rn, l =

 min(xrn)[l <= cv(l), rn > cv(rn)]

);

 L RN ID PARENT_ID XRN NEXT_BRANCH

------- -------- ---------- ---------- ---------- -----------

 1 1 1 1

 2 2 2 1 2 7

 3 3 3 2 3 4

 3 4 4 2 4 5

 3 5 6 2 5 7

 4 6 7 6 6 7

 2 7 5 1 7

7 rows selected.

Chapter 12 Solving SQl QuizzeS

335

select *

 from h

model

dimension by (rn)

measures (id, parent_id, l, 0 l_cur, rn xrn, 0 next_branch)

rules iterate (1e6) until l[iteration_number+2] is null

(

 l_cur[rn > iteration_number + 1] = l[iteration_number + 1],

 next_branch[iteration_number + 1] =

 min(case when l <= l_cur then xrn end)[rn > cv(rn)]

)

order by rn;

 RN ID PARENT_ID L L_CUR XRN NEXT_BRANCH

-------- ------ ---------- ----- -------- -------- -----------

 1 1 1 0 1

 2 2 1 2 1 2 7

 3 3 2 3 2 3 4

 4 4 2 3 3 4 5

 5 6 2 3 3 5 7

 6 7 6 4 3 6 7

 7 5 1 2 4 7

7 rows selected.

I believe there is no need to say that the first approach is more efficient

than the second one with iterations and auxiliary measure, but better

solution may be provided with analytic functions as shown in

Listing 12-13 if we made some assumptions.

Chapter 12 Solving SQl QuizzeS

336

Listing 12-13. Finding next branch using analytic functions

select h0.*,

 nullif(max(rn) over(order by s range between current

 row and x - 1e-38 following),

 count(*) over()) + 1 next_branch

 from (select h.*,

 power(2 * 10, 1 - l) x,

 sum(power(2 * 10, 1 - l)) over(order by rn) s

 from h) h0;

 ID PARENT_ID L RN X S NEXT_BRANCH

------ ---------- ----- ----- ---------- ---------- -----------

 1 1 1 1 1

 2 1 2 2 ,05 1,05 7

 3 2 3 3 ,0025 1,0525 4

 4 2 3 4 ,0025 1,055 5

 6 2 3 5 ,0025 1,0575 7

 7 6 4 6 ,000125 1,057625 7

 5 1 2 7 ,05 1,107625

7 rows selected.

If we assume that each node has not more than 10 direct descendants,

then the sum of x for all possible descendants for a given node on the nth

level can be calculated as the sum of the series below

i

i

i n
i

i

n i i n
i

i
=

∞

+ −
=

∞

− −
=

∞

∑ ∑ ∑()
= = =

1
1

1
1 1

1

10

10 2

10

20 10 2

1

20

1

2

1

2* * * 00 1n−

In other words, the sum of x for all descendants does not exceed value

x for a given node, or more specifically: for the node on the 1st level, the

limit of the sum equals to 1; for the node on the 2nd level, the limit of the

sum equals to 0.05 and so on.

Chapter 12 Solving SQl QuizzeS

337

Practically, depth is limited with number precision and we assume that

the difference between x and the sum of x for all descendants is never less

than 1e-38, thus the windowing clause is «range between current row

and x - 1e-38 following»; so the window spans the current node and all

its descendants. If we defined range as «range between 1e-38 following

and x - 1e-38 following » then the window covers only all descendants.

Eventually we managed to calculate a columns s that can be used

to define a window with a range by x. This technique allows us to solve

various tasks that require applying some logic to all descendants for a

given node, possible, including the node itself.

For example, if we need to calculate the number of all descendants or

their sum, including the value of the current node, then it can be done as

shown in Listing 12-14.

Listing 12-14. Applying logic using window by all descendants

select h0.*,

 count(*) over(order by s range between 1e-38 following

and x - 1e-38 following) cnt_children,

 sum(amount) over(order by s range between current row

and x - 1e-38 following) h_sum

 from (select h.*,

 power(2 * 10, 1 - l) x,

 sum(power(2 * 10, 1 - l)) over(order by rn) s

 from h) h0;

Chapter 12 Solving SQl QuizzeS

338

ID

PA

RE
NT
_I
D
 D
ES
CR
IP
TI

 A
MO

UN
T

L

RN

X

S

 C
NT
_C
HI
LD
RE
N

H_
SU
M

--
--
 -
--

--
--
--
-
--
--
--
--
--
 -
--
--
--
-
--
-
--
--
--
 -
--
--
--
-
--
--
--
--
-
--
--
--
--
--
--
--
-
--
--
--
-

 1

to
p

 1
0

1

 1

1

1

6

 6
41
1

 2

1
to
p-
on
e

10
0

2

 2

,0
5

 1
,0
5

4

 5
40
1

 3

2
on
e-
on
e

 2

00
0

3

 3

,0
02
5

 1
,0
52
5

0

 2
00
0

 4

2
on
e-
tw
o

 3

00
0

3

 4

,0
02
5

1,
05
5

0

 3
00
0

 6

2
on
e-
th
re
e

30
0

3

 5

,0
02
5

 1
,0
57
5

1

30
1

 7

6
th
re
e-
on
e

1

4

 6

,0
00
12
5
 1
,0
57
62
5

0

1

 5

1
to
p-
tw
o

 1

00
0

2

 7

,0
5
 1
,1
07
62
5

0

 1
00
0

7
ro
ws
 s

el
ec
te
d.

Chapter 12 Solving SQl QuizzeS

339

Without an analytic function it would require a join/subquery or

model clause. However, Oracle 12c provides one more way of doing that –

pattern matching.

select *

 from (select h.*, power(2 * 10, 1 - l) x from h)

match_recognize

(

 order by rn

 measures

 first (id) as id,

 first (parent_id) as parent_id,

 first (l) as l,

 first (rn) as rn,

 final count(*)-1 cnt_children,

 final sum(amount) h_sum

 one row per match

 after match skip to next row

 pattern (y+)

 define

 y as sum(x) < 2 * first(x)

) mr;

 ID PARENT_ID L RN CNT_CHILDREN H_SUM

------- ---------- ------- ---------- ------------ ----------

 1 1 1 6 6411

 2 1 2 2 4 5401

 3 2 3 3 0 2000

 4 2 3 4 0 3000

 6 2 3 5 1 301

 7 6 4 6 0 1

 5 1 2 7 0 1000

7 rows selected.

Chapter 12 Solving SQl QuizzeS

340

In this solution we used a condition with aggregate function «sum(x)

< 2 * first(x)» instead of a cumulative sum. An equivalent condition

using both x and s is «last(s) - first(s) < first(x)». If, however, you

use «max(s) - min(s) < first(x)», then the query fails with ORA-03113

(versions 12.2.0.1.0, 12.1.0.2.0). Using pattern matching, specific functions

first/last is more preferable than aggregate functions min/max because we

know that s is monotonically increasing.

It’s possible to use a rule with min/max; however if we use all rows

instead of one row and apply filtering, this obviously introduces additional

costs.

select *

 from (select h.*,

 power(2 * 10, 1 - l) x,

 sum(power(2 * 10, 1 - l)) over(order by rn) s

 from h) h0

match_recognize

(

 order by rn

 measures

 final count(*)-1 cnt_children,

 final sum(amount) h_sum,

 count(*) cnt

 all rows per match

 after match skip to next row

 pattern (y+)

 define

 y as max(s) - min(s) < first(x)

) mr

where cnt = 1;

Chapter 12 Solving SQl QuizzeS

341

And finally, the most important detail when using pattern matching is

that there is no need to use a trick based on the limit of the sum if we want

to find the next branch or apply some logic to all the descendants. We just

need to specify a pattern that matches all descendants and start the search

from every row -«after match skip to next row».

select *

 from h

match_recognize

(

 order by rn

 measures

 classifier() cls,

 first (id) as id,

 first (parent_id) as parent_id,

 first (l) as l,

 first (rn) as rn,

 first (amount) as amount,

 final count(child.*) cnt_children,

 final sum(amount) h_sum

 one row per match

 after match skip to next row

 pattern (strt child+|no_children)

 define

 child as child.l > strt.l

) mr;

Chapter 12 Solving SQl QuizzeS

342

CLS ID PARENT_ID L RN AMOUNT CNT_CHILDREN H_SUM

----------- ----- ------------- ---- --- ---------- -------------- -------

CHILD 1 1 1 10 6 6411

CHILD 2 1 2 2 100 4 5401

NO_CHILDREN 3 2 3 3 2000 0 2000

NO_CHILDREN 4 2 3 4 3000 0 3000

CHILD 6 2 3 5 300 1 301

NO_CHILDREN 7 6 4 6 1 0 1

NO_CHILDREN 5 1 2 7 1000 0 1000

7 rows selected.

 Random Subset
For the table containing n rows with a primary key and values from 1 to n

without gaps:

create table t_id_value as

select rownum id, 'name' || rownum value from dual connect by

rownum <= 2e6;

alter table t_id_value add constraint pk_t_id_value primary

key (id);

The goal is to return k unique random rows such as the probability that

a row appears in the result is equal for all rows. For simplicity let’s assume

k equals 10.

 Solution
A trivial solution is below:

select *

 from (select * from t_id_value order by dbms_random.value)

 where rownum <= 10;

Chapter 12 Solving SQl QuizzeS

343

In this case we generate dbms_random.value for all rows and then take

the first 10 rows with the lowest value.

If the table is wide – that is, contains many columns or some long

strings, then we can optimize sort by ordering only rowids and introducing

an additional join.

select *

 from t_id_value

 where rowid in

 (select *

 from (select rowid from t_id_value order by

dbms_random.value)

 where rownum <= 10);

For the table introduced in this task, demonstrated optimization does

not lead to noticeable improvement though.

Given that all IDs start from 1 and there are no gaps, we can use the

approach below with generating 10 random IDs.

select *

 from t_id_value

 where id in (select trunc(dbms_random.value(1,

 (select max(id) from t_id_value) + 1))

 from dual

 connect by level <= 10);

There is some chance though that we generate duplicates. For

example, the query below returns 9 rows instead of 10:

exec dbms_random.seed(48673);

PL/SQL procedure successfully completed.

select *

 from t_id_value

Chapter 12 Solving SQl QuizzeS

344

 where id in (select trunc(dbms_random.value(1,

 (select max(id) from t_id_value) + 1))

 from dual

 connect by level <= 10);

 ID VALUE

---------- --

 564703 name564703

 917426 name917426

 1230672 name1230672

 1837951 name1837951

 1367140 name1367140

 248223 name248223

 873017 name873017

 581109 name581109

 1206874 name1206874

9 rows selected.

We can work around it by pre-generating a few reserve rows and by

selecting k unique rows. However, to avoid even a theoretical chance of

duplicates, we need to validate for the kth row whether all generated rows

are unique. If not, then generate a new row and re-validate. This approach

with referencing all generated rows can be implemented using a model

clause or recursive subquery factoring.

select *

 from t_id_value

 where id in

 (

 select distinct x

 from dual

 model return updated rows

Chapter 12 Solving SQl QuizzeS

345

 dimension by (0 id)

 measures(0 i, 0 x, (select max(id) from t_id_value) max_id)

 rules

 iterate (1e9) until i[0] = 10

 (

 x[iteration_number] = trunc(dbms_random.value(1,

max_id[0] + 1)),

 i[0] = case when iteration_number < 10 - 1

 then 0 else count(distinct x)[any] end

)

);

If we use «exec dbms_random.seed(48673)», then validation will be

executed twice: after the 10th generated row and after the 11th, but in

mostly all cases their validation will happen only once.

A solution using recursive subquery factoring is below:

with rec(lvl, batch)

 as (select 1,

 numbers(trunc(dbms_random.value(1, 2e6 + 1)))

 from dual

 union all

 select lvl + 1,

 batch multiset union all

 numbers(trunc(dbms_random.value(1, 2e6 + 1)))

 from rec

 where case when lvl < 10 then 0

 -- cardinality(set())

 -- does not work in recursive member

 else (select count(*) from table(set

(rec.batch)))

 end < 10)

Chapter 12 Solving SQl QuizzeS

346

select *

 from t_id_value

 where id in (select column_value

 from (select *

 from (select * from rec t order by lvl

desc)

 where rownum = 1),

 table(batch));

We accumulate generated values in a column batch that has data type

numbers and check uniqueness starting from a kth iteration, similarly to a

model solution. For simplicity, the maximum value has been hard-coded

instead of using a scalar subquery.

The disadvantage of SQL approaches is that we need to scan all

generated values to check uniqueness, which may be inefficient for large k.

PL/SQL helps to avoid that if we use an associative array (this logic can be

encapsulated in a pipelined function and used in SQL).

declare

 type tp_arr is table of binary_integer index by binary_integer;

 arr tp_arr;

 i int := 0;

begin

 while true loop

 arr(trunc(dbms_random.value(1, 2e6 + 1))) := null;

 i := i + 1;

 if i >= 10 and arr.count = 10 then

 exit;

 end if;

 end loop;

Chapter 12 Solving SQl QuizzeS

347

 i := arr.first;

 while (i is not null) loop

 dbms_output.put_line(i);

 i := arr.next(i);

 end loop;

end;

/

On the other hand, the more values we need to generate, the more

preferable the first approach with ordering by random value. Also I’d like

to highlight that all approaches that generate k unique values work only if

there are no gaps. So if the primary key is varchar2, then we may need to

read all the data and map all the rows to array or integers.

 Covering Ranges
For the table containing ranges from a to b such as b > a and a is unique

create table t_range(a, b) as

(select 1, 15 from dual

union all select 3, 17 from dual

union all select 6, 19 from dual

union all select 10, 21 from dual

union all select 17, 26 from dual

union all select 18, 29 from dual

union all select 20, 32 from dual

union all select 24, 35 from dual

union all select 28, 45 from dual

union all select 30, 49 from dual);

we need to return covering ranges (1:15), (17:26), (28:45), that is, we

start from the row with the minimal a and then pick up the row with the

minimal a greater than the current b and so on.

Chapter 12 Solving SQl QuizzeS

348

 Solution
Relatively simple, it can be solved using connect by and analytic functions,

but performance is quite inefficient in this case.

select a, b

 from (select a,

 b,

 min(a) over(order by a range between b - a

following

 and unbounded following) as next_a,

 min(a) over() start_a

 from t_range)

 start with a = start_a

connect by prior next_a = a;

 A B

---------- ----------

 1 15

 17 26

 28 45

select a, b

 from (select a, b, lag(a) over(order by a) as lag_a from

t_range)

 start with lag_a is null

connect by a >= prior b and lag_a < prior b;

 A B

---------- ----------

 1 15

 17 26

 28 45

Chapter 12 Solving SQl QuizzeS

349

A quite elegant and efficient solution can be demonstrated using

pattern matching.

select *

 from t_range

match_recognize

(

 order by a

 all rows per match

 pattern((x|{-dummy-})+)

 define

 x as nvl(last(x.b, 1), 0) <= x.a

) mr;

 A B

---------- ----------

 1 15

 17 26

 28 45

There are some alternative solutions using a model clause but their

performance is worse than pattern-matching solutions.

 Zeckendorf Representation
Zeckendorf’s theorem states that every positive integer can be represented

uniquely as the sum of one or more distinct Fibonacci numbers in such a

way that the sum does not include any two consecutive Fibonacci numbers.

For any given positive integer, Zeckendorf representation can be found

by using a greedy algorithm, choosing the largest possible Fibonacci

number at each stage.

Chapter 12 Solving SQl QuizzeS

350

Our goal is to find representation that satisfies the conditions of

Zeckendorf's theorem for all numbers from table n.

create table n(num) as select 222 from dual union all select

3690 from dual;

The expected result is

 NUM PATH

---------- ------------------------------

 222 144+55+21+2

 3690 2584+987+89+21+8+1

For simplicity, let’s assume that we have a table fib(lvl, value) with the

first 20 Fibonacci numbers. Numbers can be generated using one of many

ways described in this book.

 Solution
A brute force solution can be implemented using connect by as follows.

• Generate all permutations of Fibonacci numbers that

are less than a given number;

• Filter only those with sum value equals to given number;

• Filter permutation with a min number of elements.

Listing 12-15. Zeckendorf representation using connect by

with n_fib as

 (select num, value, lvl, max(lvl) over(partition by num)

max_lvl

 from n

 join fib

 on fib.value <= n.num),

Chapter 12 Solving SQl QuizzeS

351

permutation as

 (select num, sys_connect_by_path(value, '+') path, level p_lvl

 from n_fib

 start with lvl = max_lvl

 connect by prior num = num

 and prior value > value

 and sys_guid() is not null)

select num,

 max(substr(path, 2)) keep(dense_rank first order by

p_lvl) path

 from (select num, path, p_lvl

 from permutation p

 join fib

 on instr(p.path || '+', '+' || fib.value || '+') > 0

 group by num, path, p_lvl

 having sum(value) = num)

 group by num

 order by num;

Obviously this approach is extremely inefficient, and we can instead,

for each input number, loop thorough Fibonacci numbers in descending

order and on each step mark a current Fibonacci numbers if its sum with

the numbers marked so far does not exceed the input number. This iterative

logic can be implemented using recursive subquery factoring, for example.

Listing 12-16. Zeckendorf representation using recursive subquery

factoring and cross apply

with n_fib as

 (select num, value, lvl, max(lvl) over(partition by num) max_lvl

 from n

 join fib

 on fib.value <= n.num),

Chapter 12 Solving SQl QuizzeS

352

rec(lvl, num, f, s) as

 (select 1, n_fib.num, n_fib.value, 0

 from n_fib

 where n_fib.lvl = n_fib.max_lvl

 union all

 select rec.lvl + 1, l.num, l.value, rec.f + rec.s

 from rec

 cross apply (select *

 from (select *

 from n_fib

 where n_fib.num = rec.num

 and n_fib.value + rec.s + rec.f

<= rec.num

 order by lvl desc)

 where rownum = 1) l)

cycle lvl set c to 1 default 0

select num, listagg(f, '+') within group(order by f desc) path

 from rec

 group by num

 order by num;

The lateral view has been used in Listing 12-16 in order to get on each

step a max Fibonacci number that satisfies a condition. As was mentioned

in the previous chapter, “When PL/SQL Is Better Than Vanilla SQL,” there

may be a false positive cycle detection if there are multiple joins or lateral

views in a recursive member; «cycle» clause was used to handle that.

This solution can be simplified and optimized by using a scalar

subquery instead of a lateral view – in this case, a query can be executed

on Oracle 11g.

Chapter 12 Solving SQl QuizzeS

353

Listing 12-17. Zeckendorf representation using recursive subquery

factoring. Simplified

with rec(lvl, num, f, s) as

 (select 1,

 n.num,

 (select max(fib.value) from fib where fib.value

<= n.num),

 0

 from n

 union all

 select lvl + 1,

 d.num,

 (select max(fib.value)

 from fib

 where fib.value <= d.num - (d.f + d.s)),

 d.f + d.s

 from rec d

 where d.s + d.f < d.num)

select num, listagg(f, '+') within group(order by f desc) path

 from rec

 group by num

 order by num;

As you see, table fib is scanned multiple times for both approaches. To

avoid multiple scans we can join tables n and fib and apply a model on top

of the joined recordset.

Chapter 12 Solving SQl QuizzeS

354

Listing 12-18. Zeckendorf representation using model clause

with n_fib as

 (select num, value, lvl

 from n

 join fib

 on fib.value <= n.num)

, m as

(select *

 from n_fib

 model

 ignore nav

 partition by (num part)

 dimension by (lvl)

 measures (num, value, 0 x)

 rules

 (

 x[any] order by lvl desc =

 case when x[cv(lvl)+1] + value[cv(lvl)] <= num[cv(lvl)]

 then x[cv(lvl)+1] + value[cv(lvl)]

 else x[cv(lvl)+1]

 end

))

select num, listagg(f, '+') within group(order by f desc) path

 from (select num, max(value) f from m group by num, x)

 group by num

 order by num;

And finally the most efficient solution can be implemented using

pattern matching.

Chapter 12 Solving SQl QuizzeS

355

Listing 12-19. Zeckendorf representation using pattern matching

select num,

 (select listagg(value, '+')

 within group(order by value desc) path

 from (select n.num, fib.value from fib) y

 match_recognize

 (

 order by value desc

 all rows per match

 pattern((x|{-dummy-})+)

 define

 x as sum(x.value) <= num

) mr

) path

 from n;

Instead of a scalar subquery we could have used an explicit join with

a fib table and «partition by num order by value desc» in a match

recognize clause.

Implementation using recursive subquery factoring cannot be done in

a correlated scalar subquery because in this case it’s not possible to refer

columns from the main table.

Let’s demonstrate this on a simple example:

select t.*,

 (with rec(lvl) as (select /*t.id*/ 5 lvl from dual

 union all

 select rec.lvl + 1 from rec where

lvl < 10)

 select listagg(lvl, ', ') within group(order by lvl)

 from rec) str

 from (select 5 id from dual) t;

Chapter 12 Solving SQl QuizzeS

356

If you uncomment t.id the query will fail with «ORA-00904: "T"."ID":

invalid identifier».

 Top Paths
For the table with the list of paths, return only those that do not have

subpaths.

Listing 12-20. The list of paths

create table t_path(path) as

select '/tmp/cat/' from dual

union all select '/tmp/cata/' from dual

union all select '/tmp/catb/' from dual

union all select '/tmp/catb/catx/' from dual

union all select '/usr/local/' from dual

union all select '/usr/local/lib/liba/' from dual

union all select '/usr/local/lib/libx/' from dual

union all select '/var/cache/' from dual

union all select '/var/cache/'||'xyz'||rownum||'/' from dual

connect by level <= 1e6;

For the data from Listing 12-20, the expected result is the following:

PATH

/tmp/cat/

/tmp/cata/

/tmp/catb/

/usr/local/

/var/cache/

Chapter 12 Solving SQl QuizzeS

357

 Solution
A straightforward solution is self join on like and filtering. The main

disadvantage of this approach is that the join method can be only NESTED

LOOPS because of the join predicate, or technically there will be a full scan

of an outer table for each row from the inner table. This can be improved

a little bit if we use not exists instead of an outer join – in this case Oracle

will scan the outer table until the first match for each record from the inner

table is found.

Listing 12-21. Filtering top paths using join/subquery

select t_path.path

 from t_path

 left join t_path t_top

 on t_path.path like t_top.path || '%_/'

 where t_top.path is null;

PATH

/tmp/cat/

/tmp/cata/

/tmp/catb/

/usr/local/

/var/cache/

Elapsed: 00:00:34.54

select path

 from t_path

 where not exists (select null

 from t_path t_top

 where t_path.path like t_top.path || '%_/');

Chapter 12 Solving SQl QuizzeS

358

PATH

/tmp/cat/

/tmp/cata/

/tmp/catb/

/usr/local/

/var/cache/

Elapsed: 00:00:09.63

After rewriting the query with a not exist execution, time dropped more

than thrice. If we specify an additional filter «and where rownum = 1» in a

subquery, this will have no impact on performance because of the way how

filter works.

Apparently most of the time is spent on joining and evaluating the like

predicate and it would be good to get rid of it. We can derive all subpaths

for each path and if some paths have common subpaths, then return only

those with a minimal number of subpaths as shown in Listing 12-22.

Listing 12-22. Filtering top path using lateral and group by

with t0 as

 (select path,

 length(path) - length(replace(path, '/')) - 1 depth,

 substr(path, 1, instr(path, '/', 1, l.id + 1)) token

 from t_path,

 lateral (select rownum id

 from dual

 connect by level <

 length(path) - length(replace(path, '/'))) l),

t1 as (select t0.*, min(depth) over(partition by token) m from t0)

select path from t1 group by path, depth having depth = min(m)

 order by path;

Chapter 12 Solving SQl QuizzeS

359

PATH

/tmp/cat/

/tmp/cata/

/tmp/catb/

/usr/local/

/var/cache/

Elapsed: 00:00:22.78

In this case the lateral view also causes NESTED LOOPS, which is quite

CPU intensive and the final execution time is somewhere between the first

and second query from Listing 12-21.

If a maximal possible path depth is known in advance, then we can

implement the following approach: for each subpath we check if the

current path contains something after subpath (pi is not null) and there is

another path that terminates in this subpath (mi = 0) then the current path

is filtered out.

Listing 12-23. Filtering out top path using tricky analytics

select path

 from (select t1.*,

 min(nvl2(p2, 1, 0)) over(partition by p1) m2,

 min(nvl2(p3, 1, 0)) over(partition by p1, p2) m3,

 min(nvl2(p4, 1, 0)) over(partition by p1, p2,

p3) m4,

 min(nvl2(p5, 1, 0)) over(partition by p1, p2,

p3, p4) m5

Chapter 12 Solving SQl QuizzeS

360

 from (select path,

 substr(path, i1, i2 - i1) p1,

 substr(path, i2, i3 - i2) p2,

 substr(path, i3, i4 - i3) p3,

 substr(path, i4, i5 - i4) p4,

 substr(path, i5, i6 - i5) p5

 from (select path,

 instr(path, '/', 1, 1) i1,

 instr(path, '/', 1, 2) i2,

 instr(path, '/', 1, 3) i3,

 instr(path, '/', 1, 4) i4,

 instr(path, '/', 1, 5) i5,

 instr(path, '/', 1, 6) i6

 from t_path) t0) t1)

 where not (m2 = 0 and p2 is not null or m3 = 0 and p3 is not

null or

 m4 = 0 and p4 is not null or m5 = 0 and p5 is not

null);

PATH

/tmp/cat/

/tmp/cata/

/tmp/catb/

/usr/local/

/var/cache/

Elapsed: 00:00:13.68

Chapter 12 Solving SQl QuizzeS

361

A solution with not exists is faster than the query from Listing 12-23;

nevertheless the latter one is based on some assumptions while the former

is a more generic approach. Most of the time for a query with analytics was

spent on sorting. Also it’s important to note that «sort_area_size» was set

to the maximal value and none of the queries required disk IO.

The last solution uses pattern matching.

select *

from t_path

match_recognize

(

 order by path

 measures

 first(path) path

 one row per match

 pattern(x+)

 define

 x as path like first(path) || '%'

) mr;

PATH

/tmp/cat/

/tmp/cata/

/tmp/catb/

/usr/local/

/var/cache/

Elapsed: 00:00:00.89

Execution time is less than a second! The algorithm is very simple:

we check whether he first path from the current group is a subpath of the

current path; if not, then a new group starts.

Chapter 12 Solving SQl QuizzeS

362

For Oracle versions before 12c, the optimal solution would be a PL/SQL

pipelined function with a single table scan and similar logic to pattern

matching. In other words, this quiz is yet another great example when the

cursor for loop may be a better solution than a vanilla SQL.

 Resemblance Group
Combine rows into a resemblance group according to this logic: we move

across all rows from min to max and mark the current row if there is a row

in the group such as the difference between its value and current value is

not more than 1.

For the data below all the rows should be in the group except those

with ID = 6 and ID = 8.

create table t_resemblance(id, value) as

(select 1, 1 from dual

union all select 2, 2 from dual

union all select 3, 2.5 from dual

union all select 4, 3.4 from dual

union all select 5, 0.4 from dual

union all select 6, 5 from dual

union all select 7, -0.5 from dual

union all select 8, -2 from dual

union all select 9, -1 from dual

union all select 10, 3 from dual

union all select 11, 4 from dual

union all select 12, 5 from dual);

The 12th row is part of the group even though its value equals to the

6th row, which has not been marked. That is because the group contained

11th row with a value = 4 when we were checking the 12th row.

Chapter 12 Solving SQl QuizzeS

363

 Solution
For each element in the group there is another element such as a

difference between the two is not more than 1; thus, according to

transitivity law we can check a current element only with lower and upper

bounds before adding it into the group.

In pure SQL this logic can be implemented using an iterative model.

select *

from t_resemblance

model

ignore nav

dimension by (row_number() over (order by id) id)

measures(value, 0 mi, 0 ma, 0 flag)

rules iterate (1e9) until value[iteration_number + 2] = 0

(

 flag[iteration_number + 1] =

 case when value[iteration_number + 1] between

 mi[iteration_number] - 1 and ma[iteration_number] + 1

 or iteration_number = 0

 then 1 end,

 mi[iteration_number + 1] =

 decode(flag[iteration_number + 1], 1, least(mi[iteration_

number],

 value[iteration_number + 1]), mi[iteration_number]),

 ma[iteration_number + 1] =

 decode(flag[iteration_number + 1], 1, greatest(ma[iteration_

number],

 value[iteration_number + 1]), ma[iteration_number])

);

Chapter 12 Solving SQl QuizzeS

364

 ID VALUE MI MA FLAG

---------- ---------- ---------- ---------- ----------

 1 1 0 1 1

 2 2 0 2 1

 3 2.5 0 2.5 1

 4 3.4 0 3.4 1

 5 .4 0 3.4 1

 6 5 0 3.4

 7 -.5 -.5 3.4 1

 8 -2 -.5 3.4

 9 -1 -1 3.4 1

 10 3 -1 3.4 1

 11 4 -1 4 1

 12 5 -1 5 1

12 rows selected.

An algorithm walks through the recordset and on each iteration

changes measures only for one row. It updates the upper and lower

bounds for the group and marks the current element.

Iterations are necessary because we have to update multiple measures for

each row. If we use rules with ANY instead, then the model would evaluate

the first rule for all rows and then the second rule for all rows and so on.

Taking into account the specific of the logic, we can try to approach a

solution using a pattern-matching clause but in this case we are facing a

couple of limitations.

• If we use an aggregate function in the define clause

then it’s applied to all rows the including current row.

So we cannot compare current value with min/max

across values matched so far.

Chapter 12 Solving SQl QuizzeS

365

• It’s not possible to use measures in the define clause

and moreover measure values for the previous row. The

reason is that measures are evaluated after a match is

found.

We can recall that we can use the next function but in this case we

need to apply it to shifted values by one row. This is demonstrated below

by using a new column vv instead of a value in the define clause.

select *

 from (select t.*, lag(value, 1, value) over(order by id) vv

 from (select id, value

 from t_resemblance t

 union all select null, null from dual) t)

match_recognize

(

 order by id

 measures

 match_number() match,

 classifier() cls,

 min(x.value) mi,

 max(x.value) ma

 all rows per match

 pattern((x|dummy)+)

 define

 x as (next(x.vv) >= min(x.vv) - 1 and next(x.vv)

<= max(x.vv) + 1)

 -- x as (next(x.vv) between min(x.vv) - 1 and max(x.vv) + 1)

) mr

where id is not null;

Chapter 12 Solving SQl QuizzeS

366

 ID MATCH CLS MI MA VALUE VV

-------- -------- ----- ------- -------- ---------- ----------

 1 1 X 1 1 1 1

 2 1 X 1 2 2 1

 3 1 X 1 2.5 2.5 2

 4 1 X 1 3.4 3.4 2.5

 5 1 X .4 3.4 .4 3.4

 6 1 DUMMY .4 3.4 5 .4

 7 1 X -.5 3.4 -.5 5

 8 1 DUMMY -.5 3.4 -2 -.5

 9 1 X -1 3.4 -1 -2

 10 1 X -1 3.4 3 -1

 11 1 X -1 4 4 3

 12 1 X -1 5 5 4

12 rows selected.

We also have to add one additional row with a null ID value to properly

handle the last row in the original recordset. Functions min/max with

x.value as an argument were used to return lower and upper bounds

for each step, but this is for information purposes only. All the logic is

implemented in one line in the define clause. If we use the next function

with the between operator, then the query fails with an exception

“ORA-62508: illegal use of aggregates or navigation operators

in MATCH_RECOGNIZE clause”; that is why a rule with two conditions was

used instead.

The last thing to note about this task is that one more solution can be

implemented using a recursive subquery factoring, but a pattern-matching

solution is much more efficient.

Chapter 12 Solving SQl QuizzeS

367

 Baskets
The goal is to allocate items to baskets with defined capacities. We loop

through baskets from a min to max identifier and allocate items according

to their priority. If some item was allocated to a specific basket, then it

cannot be allocated to any other basket. For every basket, the total amount

of the items cannot exceed the basket amount.

For the below data

with

 baskets(basket_id, basket_amount) as

 (select 100, 500000 from dual union all

 select 200, 400000 from dual union all

 select 300, 1000000 from dual

),

 inventory(item_id, item_amount) as

 (select 1000001, 50000 from dual union all

 select 1000002, 15000 from dual union all

 select 1000003, 250000 from dual union all

 select 1000004, 350000 from dual union all

 select 1000005, 45000 from dual union all

 select 1000006, 100500 from dual union all

 select 1000007, 200500 from dual union all

 select 1000008, 30050 from dual union all

 select 1000009, 400500 from dual union all

 select 1000010, 750000 from dual

),

 eligibility(basket_id, item_id, priority_level) as

 (select 100, 1000003, 1 from dual union all

 select 100, 1000004, 2 from dual union all

 select 100, 1000002, 3 from dual union all

 select 100, 1000005, 4 from dual union all

Chapter 12 Solving SQl QuizzeS

368

 select 200, 1000004, 1 from dual union all

 select 200, 1000003, 2 from dual union all

 select 200, 1000001, 3 from dual union all

 select 200, 1000005, 4 from dual union all

 select 200, 1000007, 5 from dual union all

 select 200, 1000006, 6 from dual union all

 select 300, 1000002, 1 from dual union all

 select 300, 1000009, 2 from dual union all

 select 300, 1000010, 3 from dual union all

 select 300, 1000006, 4 from dual union all

 select 300, 1000008, 5 from dual

)

The expected result is the following

BASKET_ID PRIORITY_LEVEL ITEM_ID BASKET_AMOUNT ITEM_AMOUNT RESULT

---------- -------------- -------- ------------- ----------- -------

 100 1 1000003 500000 250000 250000

 100 2 1000004 500000 350000 0

 100 3 1000002 500000 15000 265000

 100 4 1000005 500000 45000 310000

 200 1 1000004 400000 350000 350000

 200 2 1000003 400000 250000 0

 200 3 1000001 400000 50000 400000

 200 4 1000005 400000 45000 0

 200 5 1000007 400000 200500 0

 200 6 1000006 400000 100500 0

 300 1 1000002 1000000 15000 0

 300 2 1000009 1000000 400500 400500

 300 3 1000010 1000000 750000 0

 300 4 1000006 1000000 100500 501000

 300 5 1000008 1000000 30050 531050

15 rows selected.

Chapter 12 Solving SQl QuizzeS

369

 Solution
The main complexity of this task is that we need to track allocated times.

Otherwise the solution would be quite simple and similar to «Zeckendorf

representation». Also this detail makes it impossible to use pattern

matching for a solution.

We will use a joined recordset as a source so let’s introduce a factored

query t.

 t(basket_id, item_id, basket_amount, item_amount,

priority_level) as

 (select e.basket_id,

 e.item_id,

 b.basket_amount,

 i.item_amount,

 e.priority_level

 from eligibility e

 join baskets b

 on b.basket_id = e.basket_id

 join inventory i

 on i.item_id = e.item_id

 order by basket_id, priority_level)

Listing 12-24 shows how a task can be solved using a model clause.

Listing 12-24. Allocating items using model clause

select *

from t

model

dimension by (basket_id, priority_level, item_id)

measures (basket_amount, item_amount, 0 result)

rules

Chapter 12 Solving SQl QuizzeS

370

(

 result[any, any, any] order by basket_id, priority_level,

item_id =

 case when max(result)[any, any, cv(item_id)] = 0 and

 nvl(max(result)[cv(basket_id),priority_level

< cv(priority_level),any],0) +

 item_amount[cv(basket_id),cv(priority_level),

cv(item_id)]

 <= max(basket_amount)[cv(basket_id),cv(priority_

level),any]

 then nvl(max(result)[cv(basket_id),priority_level

< cv(priority_level),any],0) +

 item_amount[cv(basket_id),cv(priority_level),

cv(item_id)]

 else 0

 end

)

order by 1, 2;

The combination of basket_id and priority_level is enough for unique

addressing but item_id has been added to the dimensions so that we can

figure out whether a specific item has been used or not. The entire logic is

implemented in one compact rule but it uses a few aggregates with various

addressing, which makes a solution not quite efficient.

We may note that it’s possible to use an approach similar to the one

for the previous quiz “Resemblance group” when we iterated through

 recordset in a specific order and calculated several measures for each row.

In this case measures are is_used – flag, which identifies whether a specific

item has been allocated to a specific basket or not, total – running total for

each basket and str – concatenation of allocated items. Implementation

may be done using an iterative model (like for previous task) or recursive

subquery factoring. The latter is shown in Listing 12-25.

Chapter 12 Solving SQl QuizzeS

371

Listing 12-25. Allocating items using recursive subquery factoring

with t0 as

(select t.*, row_number() over (order by basket_id,

priority_level) rn

 from t),

rec (basket_id, item_id, basket_amount, item_amount,

priority_level,

 rn, total, is_used, str) as

(select t.basket_id, t.item_id, t.basket_amount,

 t.item_amount, t.priority_level, t.rn,

 case when t.item_amount <= t.basket_amount

 then t.item_amount else 0 end,

 case when t.item_amount <= t.basket_amount then 1 end,

 cast(case when t.item_amount <= t.basket_amount

 then ',' || t.item_id end as varchar2(4000))

 from t0 t where rn = 1

 union all

 select t.basket_id, t.item_id, t.basket_amount,

 t.item_amount, t.priority_level, t.rn,

 case when decode(t.basket_id, r.basket_id, r.total, 0)

 + t.item_amount <= t.basket_amount

 and instr(r.str, t.item_id) = 0

 then decode(t.basket_id, r.basket_id, r.total, 0)

 + t.item_amount

 else decode(t.basket_id, r.basket_id, r.total, 0)

 end,

 case when decode(t.basket_id, r.basket_id, r.total, 0)

 + t.item_amount <= t.basket_amount

 and instr(r.str, t.item_id) = 0

 then 1

 end,

Chapter 12 Solving SQl QuizzeS

372

 case when decode(t.basket_id, r.basket_id, r.total, 0)

 + t.item_amount <= t.basket_amount

 and instr(r.str, t.item_id) = 0

 then r.str || ',' || t.item_id

 else r.str

 end

 from t0 t

 join rec r on t.rn = r.rn + 1)

select * from rec;

Concatenation of allocated items is used to check whether a current

item has been allocated or not, but we could have used a collection instead

of a string to avoid limitations of varchar2 length. Anyway, we have to

populate a list of used items for each row, which has negative impact on

memory consumption and overall performance.

Although a solution with a model is quite concise, the performance is

reasonable for relatively small data volumes - around thousands of rows.

Performance of a recursive subquery factoring may be improved if you

insert t0 into a temporary table with index by rn so that Oracle accesses

only a single row by index on each iteration.

The most efficient solution would be PL/SQL function that uses a

cursor for loop and an associative array of allocated items for the fastest

check to determine whether an item was allocated or not.

 Longest Increasing Subsequence
The longest increasing subsequence problem is to find a subsequence of a

given sequence in which the subsequence's elements are in sorted order,

lowest to highest, and in which the subsequence is as long as possible. This

subsequence is not necessarily contiguous. With adaptation to a database

we will be looking for the longest subsequence in a sequence or rows.

Chapter 12 Solving SQl QuizzeS

373

For example, for sequence

14, 15, 9, 11, 16, 12, 13

The expected result is

9, 11, 12, 13

For simplicity we will be deriving the length of the longest increasing

subsequence without returning the subsequence itself. For the above data

the correct answer is 4.

 Solution
Unlike all previous tasks let’s start with a PL/SQL approach. The problem

can be solved in a quite efficient way using dynamic programming.

So, let’s assume that we need to calculate length - L of a subsequence

for a current element and it’s already calculated for elements analyzed

so far. In such a case, the L for the current element is max(L) across all

previous elements, which are less than current element plus 1. This may

sound a bit complicated but implementation is fairly simple. Let’s reuse

type numbers from the section “Unnesting Collections” and table tmp

from the section “Iterative-Like computations,” lvl stays for length on

current step, x is order, and num is a value.

declare

 t numbers := numbers(14, 15, 9, 11, 16, 12, 13);

begin

 delete from tmp;

 for i in 1 .. t.count loop

 insert into tmp

 (lvl, x, num)

Chapter 12 Solving SQl QuizzeS

374

 values

 ((select nvl(max(lvl), 0) + 1 from tmp where num < t(i)),

i, t(i));

 end loop;

end;

/

PL/SQL procedure successfully completed.

select * from tmp;

 LVL X NUM

---------- ---------- ----------

 1 1 14

 2 2 15

 1 3 9

 2 4 11

 3 5 16

 3 6 12

 4 7 13

7 rows selected.

To get a max(lvl) for all elements we need to scan the tmp table.

Another option is using a PL/SQL variable and updating it on each

iteration. Given that for each element we scan all previous elements, the

computational complexity of the algorithm is O(n2). Also the necessity

to scan all previous elements makes implementation using recursive

subquery factoring not reasonable; please check the section “Iterative-Like

computations” for additional details.

Back to PL/SQL, an algorithm can be improved if we use an auxiliary

array that will contain the longest common subsequence and will be

Chapter 12 Solving SQl QuizzeS

375

refreshed on each iteration. Refresh is implemented according to the

next principle: we look up for the max value that is less than the current

value and put the current value after the found value. The binary search

runs in logarithmic time O(log2n), thus total computational complexity is

O(n * log2n).

declare

 x numbers := numbers(14, 15, 9, 11, 16, 12, 13);

 m numbers := numbers();

 l int;

 newl int;

 v varchar2(4000);

 -- index of the greatest element lower than p in array M

 function f(p in number) return int as

 lo int;

 hi int;

 mid int;

 begin

 lo := 1;

 hi := l;

 while lo <= hi loop

 mid := ceil((lo + hi) / 2);

 if x(m(mid)) < p then lo := mid + 1; else hi := mid - 1;

end if;

 end loop;

 return lo;

 end;

begin

 m.extend(x.count);

Chapter 12 Solving SQl QuizzeS

376

 l := 0;

 for i in 1 .. x.count loop

 newl := f(x(i));

 m(newl) := i;

 if newl > l then l := newl; end if;

 v := '';

 for j in 1 .. l loop

 v := v || ' ' || x(m(j));

 end loop;

 dbms_output.put_line(i || ' ' || v);

 end loop;

end;

/

1 14

2 14 15

3 9 15

4 9 11

5 9 11 16

6 9 11 12

7 9 11 12 13

PL/SQL procedure successfully completed.

The l is the length of the longest increasing subsequence on each

iteration.

SQL implementation can be done using the model clause.

with t(id, value) as

(select rownum, column_value from table(numbers(14, 15, 9, 11,

16, 12, 13)))

select *

 from t

Chapter 12 Solving SQl QuizzeS

377

model

dimension by (id, value)

measures(0 l)

(l[any, any] order by id = nvl(max(l)[id < cv(id),value

< cv(value)],0) + 1)

order by 1;

The approach is similar to the first solution in PL/SQL while there is

no way to implement a second solution on pure SQL as efficient as using

PL/SQL. When we use the model we work with a flat dataset containing

columns and rows (even though we consider it as a multidimensional

array), and it’s not possible to use any auxiliary data structures to optimize

the solution.

 Quine
The last quiz is just for fun rather than to demonstrate Oracle SQL features.

Quine is a program that takes no input and produces a copy of its own

source code as its only output. You can find a lot of solutions on the

Internet for various programming languages, and I will not focus on a

PL/SQL solution where the approach is quite similar to Pascal language,

for example. It’s a bit more interesting to demonstrate SQL approaches.

 Solution
One of the requirements is that the program (in our case, SQL query)

cannot access external sources to read its code. So the query below cannot

be treated as a complete solution.

Chapter 12 Solving SQl QuizzeS

378

set pagesize 0 linesize 90

select sql_text||';'from v$sqlarea join v$session using(sql_id)

where sid=userenv('sid');

select sql_text||';'from v$sqlarea join v$session using(sql_id)

where sid=userenv('sid');

On the other hand, the two following solutions satisfy all requirements.

select substr(rpad(1,125,'||chr(39)),26)from

dual;select substr(rpad(1,125,'||chr(39)),26)from

dual;

select substr(rpad(1,125,'||chr(39)),26)from

dual;select substr(rpad(1,125,'||chr(39)),26)from

dual;

select

replace('@''[@'||chr(93)||''')from dual;','@',q'[select

replace('@''[@'||chr(93)||''')from dual;','@',q]')from dual;

select

replace('@''[@'||chr(93)||''')from dual;','@',q'[select

replace('@''[@'||chr(93)||''')from dual;','@',q]')from dual;

Maybe you can write shorter quine in Oracle SQL?

 Summary
It was demonstrated using selected tasks that Oracle-specific SQL is much

more powerful than standard SQL, and some tasks can be solved in a

highly scalable way with very little code. I’d especially like to highlight a

new Oracle 12c feature – pattern matching, which makes it possible to

solve various tasks in a very efficient manner that otherwise would require

a lot of PL/SQL code.

Chapter 12 Solving SQl QuizzeS

379

Some complex tasks can be solved using recursive subquery factoring

or a model clause with competitive performance in compare to PL/SQL.

Both approaches do not require collections of objects unlike the PL/SQL

approach with pipelined functions. Advantages of the model are concise

code and great scalability when using partitioning and parallel execution.

Pros for recursive subquery factoring are execution in the scope of the SQL

engine, and there is no need for context switches on each iteration.

If, however, you need to implement a relatively complex algorithm

that may require additional data structures and control of execution, then

PL/SQL tends to be the preferable approach. But when you switch to

procedural language to work with data, you always should have an answer

why it’s better than SQL for your particular task. The last thing to note: if

you have to implement some intensive computations that require a lot of

CPU, then external libraries and implementation using C can be the best

choice.

Details really matter, so you have to take into account the specifics of a

particular task and compare different approaches for your Oracle version

before making a decision about the preferable approach.

Chapter 12 Solving SQl QuizzeS

381© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6_13

APPENDIX A

Useful Oracle Links
 1. A Look Under The Hood of CBO: THE 10053 Event

http://www.centrexcc.com/A%20Look%20under%20

the%20Hood%20of%20CBO%20-%20the%2010053%20

Event.pdf

 2. Closing The Query Processing Loop in Oracle 11g

http://www.vldb.org/pvldb/1/1454178.pdf

 3. The Oracle Optimizer Explain the Explain Plan

http://www.oracle.com/technetwork/database/

bi- datawarehousing/twp-explain-the-explain-

plan- 052011-393674.pdf

 4. Query Optimization in Oracle Database10g Release 2

http://www.oracle.com/technetwork/database/

bi-datawarehousing/twp-general-query-

optimization-10gr-130948.pdf

 5. SQL Sucks

http://www.nocoug.org/download/2006-08/SQL_

Sucks_NoCOUG_Journal_Article_Part_2.pdf

 6. Explaining the EXPLAIN PLAN

http://www.centrexcc.com/A Look under the Hood of CBO - the 10053 Event.pdf
http://www.centrexcc.com/A Look under the Hood of CBO - the 10053 Event.pdf
http://www.centrexcc.com/A Look under the Hood of CBO - the 10053 Event.pdf
http://www.vldb.org/pvldb/1/1454178.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-general-query-optimization-10gr-130948.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-general-query-optimization-10gr-130948.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-general-query-optimization-10gr-130948.pdf
http://www.nocoug.org/download/2006-08/SQL_Sucks_NoCOUG_Journal_Article_Part_2.pdf
http://www.nocoug.org/download/2006-08/SQL_Sucks_NoCOUG_Journal_Article_Part_2.pdf

382

https://nocoug.files.wordpress.com/2014/08/

nocoug_journal_201408.pdf

 7. Universality in Elementary Cellular Automata

http://www.complex-systems.com/pdf/15-1-1.pdf

 8. Absolutely Typical - The Whole Story on Types and

How They Power PL/SQL Interoperability

https://technology.amis.nl/wp-content/

uploads/images/AbsolutelyTypical_UKOUG2011_

jellema.zip

 9. Doing SQL from PL/SQL: Best and Worst Practices

http://www.oracle.com/technetwork/database/

features/plsql/overview/doing-sql-from-

plsql-129775.pdf

appendix a UsefUl Oracle links

https://nocoug.files.wordpress.com/2014/08/nocoug_journal_201408.pdf
https://nocoug.files.wordpress.com/2014/08/nocoug_journal_201408.pdf
http://www.complex-systems.com/pdf/15-1-1.pdf
https://technology.amis.nl/wp-content/uploads/images/AbsolutelyTypical_UKOUG2011_jellema.zip
https://technology.amis.nl/wp-content/uploads/images/AbsolutelyTypical_UKOUG2011_jellema.zip
https://technology.amis.nl/wp-content/uploads/images/AbsolutelyTypical_UKOUG2011_jellema.zip
http://www.oracle.com/technetwork/database/features/plsql/overview/doing-sql-from-plsql-129775.pdf
http://www.oracle.com/technetwork/database/features/plsql/overview/doing-sql-from-plsql-129775.pdf
http://www.oracle.com/technetwork/database/features/plsql/overview/doing-sql-from-plsql-129775.pdf

383© Alex Reprintsev 2018
A. Reprintsev, Oracle SQL Revealed, https://doi.org/10.1007/978-1-4842-3372-6

Index

A

Adjacency lists model, 119
Aggregate functions

atomic type result, 104
Cartesian join, 117
collect function, 105
concatenate collection

elements, 104
cube, 114
definition, 103
EAV model, 107
grouping and

grouping_id, 115–117
parsing pivot XML, 110
rollup, 114
UDAG, 106
unpivot operator, 112

Analytic functions
aggregate functions, 94
avoiding joins, 88–89
definition, 85
differences and

interchangeability
max date, 99–100
max value

partition, 98

unbounded range, 98
fetch termination

PL/SQL function, 262–263
recursive subquery

factoring, 257, 259, 261
row_number, 248, 250, 252,

254–255
sum, 255–256
transaction, 247
types and function, 261–262

vs. joins
approaches, 96
execution plans, 97–98

last_value and ignore nulls,
100–101

limitations, 92
listagg and stragg, 94–95
logic implementation, 89–90
order by, 86
partition by part, 86
query rewriting, 87

ANSI joins
Cloudera Impala, 14
cross join, 6
demonstration tables, 6
full outer join, 10
inner join

https://doi.org/10.1007/978-1-4842-3372-6

384

equality condition, 7, 8
non-equality predicate, 8

left outer join, 9
limitations, 61
pre-join predicates,

inner table, 21
right outer join, 9

Anti joins, 13

B
Baskets

model clause, 369–370
pattern matching, 369
recursive subquery factoring,

371–372
Built-in access method

dbms_hprof, 278–279
PL/SQL function, 277–278
recursive subquery

factoring, 275, 277
trivial solution, 273

C
Connect by clause

adjacency lists model, 119
cycle detection, “prior id_parent

is not null”, 134–135
cycle identification, 131
depth-first search approach, 121
directed graphs, 125
Fibonacci numbers

generation, 131

generating sequences, 126
handling elements, recursive

sequence, 129
and joins, 122–123
level and rownum,

differences, 137
ordering siblings, 121
parent-child relationships, 119
pseudocolumns, 119, 135
recursive sequence, generating

values, 128
sys_connect_by_path function,

121
sys_guid, 132
recursive function, 127

Connected components, 308–310
Cycles

building hierarchy, 153–155
detection

ID, 151
ID_PARENT, 152
manual implementation of

logic, 155–156

D
Deterministic Finite Auto

(DFA), 214, 235

E, F
Elementary cellular

automaton, 236
Entity–attribute–value (EAV) model

flattening

ANSI joins (cont.)

Index

385

group by, 109
pivot operator, 110

Equi joins, 10

G
Graph theory, 308
Greedy algorithm, 349

H
Heuristic-based transformations, 69

final query, 75
view merging, 74–75

Hierarchical queries, see Connect
by clause

I
Iterative-like computations

built-in access method, 273–279
iterative model, 272
recursive subquery factoring, 272

J, K
Joins

ANSI (see ANSI joins)
anti, 13
named columns, 12
natural, 11
outer natural, 11
phone calls, 288
phone codes, 289–298
semi, 12

L
Logical execution order of query

clauses
aggregate and analytic

functions
inline view, 228–229
mixing, 226–227
nesting, 227

clarifications, 218
coding, wrong assumptions

predicate evaluation,
221–222

query fail, 219–221
scalar subquery caching,

223–225, 232–233
unique values,

correlated scalar
subquery, 230–231

inline views, 217
Longest increasing

subsequence, 372–373

M
match_recognize

aggregate functions, 199
analytic functions, 199, 204–206
backtracking, 215–216
DFA, 214
fibonacci numbers, 206–207
filling data gaps, 208–209
FINITE AUTOMATON, 200
NFA, 214
pattern matching, 209–212

Index

386

pattern variables, 202–203
query plans, 212–214

Model clause
aggregate functions, 178–182
analytic functions, 177–178
automatic rule

ordering, 168–169
bisection method, 172–173
checking convergence, 171–172
cyclic rule and automatic

order, 170–171
dimension, 161, 163
measures, 162
order by id, 166–167
ORDERED/ACYCLIC

models, 170
parallel execution

model query, 193–194
pipelined function, 194–195
statistics, 196

partitions, 161
performance, 187–192
positional dimension

reference, 164
presentv, presentnnv and

nvl2, 176–177
recursive measure, 167–168
recursive sequences, 182–186
reference models, 174
SQL capabilities, 183
symbolic dimension

reference, 164, 166
unique single reference, 175

N
Named columns join, 12
Natural join, 11
N consequent 1s, 325
Nested aggregate

functions, 230
Next branch

aggregate function, 340
analytic functions, 333, 336
applying logic, descendants,

337–338, 341
joins, 332–333, 339
model clause, 334–335
Oracle 12c, 339–340
pattern matching, 341
windowing clause, 337

Nondeterministic Finite Auto
(NFA), 214

O
Oracle-specific syntax

case expression, 22
full join, 16
inner join, 15
outer joins and presence

of (+), 19
pre-join and post-join

predicates, 16–18
pre-join predicates, inner

table, 21
trick with rowid, outer

table, 21
ORDERED/ACYCLIC models, 170

match_recognize (cont.)

Index

387

Ordering dependencies
DAGs, 314
directed acyclic graph, 314–315
PL/SQL, 316–319

OR-expansion
final query, 72
manual, 72
and RBO, 73
SQL feature hierarchy, 70

Outer natural join, 11

P
Pattern matching, 349
Pattern variables, 202–203
PL/SQL

combinatorial problems
input set, 280
join, 281, 283–284
recursive subquery

factoring, 286–287
UDF, 284–286

iterative-like computations (see
Iterative-like
computations)

joins (see Joins)
performance and scalability,

245
sort operations

low cardinality dimensions,
264–269

multiple, 269–271
subquery limitations, 299–302

Pseudocolumn generation
level and rownum, 135–136
level and rownum,

differences, 137
rules, 135

Q
Query transformation

ANTI join, 67–38
cost-based, 69
checking existence for

dimension IDs
fast version, 78–79
separately, 77
slow version, 77–78

column projection, 80
disabled transformations, 75
filter operation, 79
heuristic-based, 69
join methods, 79
logical optimization, 69
OR-expansion, 71
query optimizer components, 69
RBO and OR-expansion, 73
SQL optimizer tracing, 68

R
Random subset, 342
Recursive subquery factoring

algorithm, 140
building hierarchies, 140

Index

388

connect by result, 141
cycles, 151
definition, 139
finding root, 144
limitations, 156–158
recursive sequences

auxiliary columns, 143
bisection method, 144
collection column, 143

traversing hierarchies
breadth-first and depth-first

search, 147–148
function stop_at, 146
query hierarchical data, 146

Resemblance group, 362

S
Semi joins, 12
Solving SQL quizzes

baskets (see Baskets)
connected components

PL/SQL approach, 311–314
SQL approach, 310

converting into decimal
arbitrary alphabet in PL/

SQL, 307
hexadecimal value, 306
string in arbitrary

alphabet, 306
covering ranges, 347
longest increasing

subsequence, 372
N consequent 1s, 325

next branch (see Next branch)
next value, 328
ordering dependencies, 314
percentile with shift

analytic functions, 323–324
percentile_cont function, 320
self join and analytic

functions, 321–322
self join and

percentile_cont, 321
quine, 377–378
random subset, 342
resemblance group, 362
top paths (see Top paths)
Zeckendorf representation (see

Zeckendorf representation)
SQL Optimizer tracing, 68
Subquery, 299–302

T
Top paths

filtering
join/subquery, 357–358
lateral and group

by, 358–359
tricky analytics, 359, 361

pattern matching, 361
Transformation engine, 69
Turing completeness

bubble sort algorithm
model clause, 241–242
single while loop, 240–241
string of

symbols, 239–240

Recursive subquery factoring (cont.)

Index

389

Church–Turing thesis, 235
data-manipulation

rules, 235
Rule 110

evaluation, 236–237
recursive subquery

factoring, 237–238
set of rules, 236

U, V, W, X, Y
User-defined aggregates (UDAG),

106, 118, 216

Z
Zeckendorf representation

connect by, 350–351
fibonacci number, 349–350
greedy algorithm, 349
model clause, 354
pattern matching, 355
recursive subquery

factoring, 353
recursive subquery factoring

and cross apply, 351–353

scalar subquery, 352, 355

Index

	Table of Contents
	About the Author
	Introduction
	Part I: Features and Theory
	Chapter 1: Joins
	ANSI Joins
	Other Types of Joins
	Oracle-Specific Syntax
	ANSI vs. Oracle Native Syntax
	Limitation of the Oracle Native Syntax
	Unnesting Collections
	Correlated Inline Views and Subqueries
	ANSI to Native Transformation
	Clearness and Readability
	Mixing Syntax
	Controlling Execution Plan
	Limitations of ANSI

	Summary

	Chapter 2: Query Transformations
	Summary

	Chapter 3: Analytic Functions
	Differences and Interchangeability of Functions
	Summary

	Chapter 4: Aggregate Functions
	Pivot and Unpivot Operators
	Cube, Rollup, Grouping Sets
	Summary

	Chapter 5: Hierarchical Queries: Connect by
	Pseudocolumn Generation in Detail
	Summary

	Chapter 6: Recursive Subquery Factoring
	Traversing Hierarchies
	Once Again About Cycles
	Limitations of the Current Implementation
	Summary

	Chapter 7: Model
	Brief Analysis of the Performance
	Model Parallel Execution
	Summary

	Chapter 8: Row Pattern Matching: match_recognize
	Summary

	Chapter 9: Logical Execution Order of Query Clauses
	Summary

	Chapter 10: Turing Completeness
	Summary

	Part II: PL/SQL and SQL solutions
	Chapter 11: When PL/SQL Is Better Than Vanilla SQL
	Specifics of Analytic Functions
	Fetch Termination
	Avoiding Multiple Sorts

	Iterative-Like Computations
	When There Is No Effective Built-In Access Method
	Problems of a Combinatorial Nature

	Specifics of Joins and Subqueries
	Specifics of Joins
	Limitations of the Subqueries

	Summary

	Chapter 12: Solving SQL Quizzes
	Converting into Decimal Numeral System
	Solution

	Connected Components
	Solution

	Ordering Dependencies
	Solution

	Percentile with Shift
	Solution

	N Consequent 1s
	Solution

	Next Value
	Solution

	Next Branch
	Solution

	Random Subset
	Solution

	Covering Ranges
	Solution

	Zeckendorf Representation
	Solution

	Top Paths
	Solution

	Resemblance Group
	Solution

	Baskets
	Solution

	Longest Increasing Subsequence
	Solution

	Quine
	Solution

	Summary

	Appendix A: Useful Oracle Links

	Index

